Nguyễn Ngọc Như Ý , Nguyễn Thanh Phương * , Tạ Hữu Nhân , Lư Trần Tú My Phạm Thị Ngọc Nga

* Tác giả liên hệ (phuong.nguyenthanh@hcmuaf.edu.vn)

Abstract

Calcium alginate gel has been widely used in composite films with many versatile applications discovered by many scientists. Besides, the trend of using environmentally friendly leather materials has developed globally. This paper reviews information about alginate-based films and eco-friendly bio-leather, which have been synthesized based on the ion-gel linking of Calcium Alginate in aqueous solution.

Keywords: Agricultural byproducts, alginate-based composites, bioleather, biomass, Ca-Alginate, Cellulose.

Tóm tắt

Gel của Ca-alginate trong nước được ứng dụng nhiều trong vật liệu màng composite với nhiều ứng dụng linh hoạt đã được nhiều nhà khoa học phát hiện ra. Bên cạnh đó, xu hướng sử dụng vật liệu da thân thiện môi trường đã phát triển rất nhiều ở các nước trên thế giới. Bài báo này nhằm cung cấp những thông tin về vật liệu màng composite và vật liệu giả da Bioleather dựa trên liên kết ion gel của Ca- Alginate trong môi trường nước.

Từ khóa: Bioleather, Ca-Alginate, Cellulose, màng composite, phụ phẩm nông nghiệp, sinh khối

Article Details

Tài liệu tham khảo

Bierhalz, A. C., da Silva, M. A., Braga, M. E., Sousa, H. J., & Kieckbusch, T. G. (2014). Effect of calcium and/or barium crosslinking on the physical and antimicrobial properties of natamycin-loaded alginate films. LWT-Food Science and Technology, 57(2), 494-501. https://doi.org/10.1016/j.lwt.2014.02.021

Tổng cục Thống kê. (2020). Báo cáo tại hội nghị trực tuyến về hiện trạng và giải pháp xử lý phụ phẩm nông, lâm, thủy sản ở Việt Nam.

Chen, H., Ouyang, W., Lawuyi, B., & Prakash, S. (2006). Genipin cross-linked alginate-chitosan microcapsules: membrane characterization and optimization of cross-linking reaction. Biomacromolecules, 7(7), 2091-2098. https://doi.org/10.1021/bm050862y

Crow, B. B., & Nelson, K. D. (2006). Release of bovine serum albumin from a hydrogel‐cored biodegradable polymer fiber. Biopolymers, 81(6), 419-427. https://doi.org/10.1002/bip.20442

Davydova, G. A., Chaikov, L. L., Melnik, N. N., Gainutdinov, R. V., Selezneva, I. I., Perevedentseva, E. V., Mahamadiev, M. T., Proskurin, V. A., Yakovsky, D. S., Mohan, A. G., & Rau, J. V. (2024). Polysaccharide Composite Alginate–Pectin Hydrogels as a Basis for Developing Wound Healing Materials. Polymers, 16(2), 287. https://doi.org/10.3390/polym16020287

Fang, Y., Al-Assaf, S., Phillips, G. O., Nishinari, K., Funami, T., & Williams, P. A. (2008). Binding behavior of calcium to polyuronates: Comparison of pectin with alginate. Carbohydrate Polymers, 72(2), 334-341. https://doi.org/10.1016/j.carbpol.2007.08.021

Fazilah, A., Maizura, M., Abd Karim, A., Bhupinder, K., & Rajeev, B. (2011). Physical and mechanical properties of sago starch-alginate films incorporated with calcium chloride. International Food Research Journal, 18(3), 1027-1033.

Fernandes, M., Souto, A. P., Dourado, F., & Gama, M. (2021). Application of bacterial cellulose in the textile and shoe industry: development of biocomposites. Polysaccharides, 2(3), 566-581. https://doi.org/10.3390/polysaccharides2030034

George, M., & Abraham, T. E. (2006). Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. Journal of controlled release, 114(1), 1-14. https://doi.org/10.1016/j.jconrel.2006.04.017

Giz, A. S., Berberoglu, M., Bener, S., Aydelik-Ayazoglu, S., Bayraktar, H., Alaca, B. E., & Catalgil-Giz, H. (2020). A detailed investigation of the effect of calcium crosslinking and glycerol plasticizing on the physical properties of alginate films. International Journal of Biological Macromolecules, 148, 49-55. https://doi.org/10.1016/j.ijbiomac.2020.01.103

Günter, E. A., Popeyko, O. V., Belozerov, V. S., Martinson, E. A., & Litvinets, S. G. (2020). Physicochemical and swelling properties of composite gel microparticles based on alginate and callus cultures pectins with low and high degrees of methyl esterification. International Journal of Biological Macromolecules, 164, 863-870. https://doi.org/10.1016/j.ijbiomac.2020.07.189

Hoàng, N. X., Nguyên, T. T., Ngân, P. T. T., Nghiệp, T. D., Nhân, N. H., & Long, T. T. (2023). Sản xuất phân hữu cơ từ rác thải sinh hoạt. Tạp chí Khoa học Đại học cần Thơ, 59(4), 8-19.
https://doi.org/10.22144/ctujos.2023.173

Hua, S., Marks, E., Schneider, J. J., & Keely, S. (2015). Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomedicine: nanotechnology, biology and medicine, 11(5), 1117-1132. https://doi.org/10.1016/j.nano.2015.02.018

Karoyo, A. H., & Wilson, L. D. (2021). A review on the design and hydration properties of natural polymer-based hydrogels. Materials, 14(5), 1095.
https://doi.org/10.3390/ma14051095

Kim, H., Song, J. E., & Kim, H. R. (2021). Comparative study on the physical entrapment of soy and mushroom proteins on the durability of bacterial cellulose bio‐leather. Cellulose, 28, 3183-3200.
https://doi.org/10.1007/s10570-021-03705-0

Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in polymer science, 37(1), 106-126. https://doi.org/10.1016/j.progpolymsci.2011.06.003

Lee, K. Y., & Yuk, S. H. (2007). Polymeric protein delivery systems. Progress polymer science, 32(7), 669-697. https://doi.org/10.1016/j.progpolymsci.2007.04.001

Mousavi, S. N., Daneshvar, H., Dorraji, M. S. S., Ghasempour, Z., Panahi-Azar, V., & Ehsani, A. (2021). Starch/alginate/Cu-g-C3N4 nanocomposite film for food packaging. Materials Chemistry and Physics, 267, 124583. https://doi.org/10.1016/j.matchemphys.2021.124583

Thành, N. V., Bội, V. N., Vân, T. T. T., Nguyên, B. V., & Thuất, N. Đ. (2017). Tối ưu hóa quá trình nấu chiết alginate từ bã rong nâu Turbinaria ornata (Turner) J. AGARDH. Tạp chí Khoa học Đại học cần Thơ, 49, 116-121.
https://doi.org/10.22144/ctu.jvn.2017.029

Qin, Y. (2008). Alginate fibres: an overview of the production processes and applications in wound management. Polymer International, 57(2), 171-80. https://doi.org/10.1002/pi.2296

Ramdhan, T., Ching, S. H., Prakash, S., & Bhandari, B. (2020). Physical and mechanical properties of alginate based composite gels. Trends in Food Science & Technology, 106, 150-159. https://doi.org/10.1016/j.tifs.2020.10.002

Gaddam, S. K., Pothu, R., & Boddula, R. (2020). Graphitic carbon nitride (g‐C3N4) reinforced polymer nanocomposite systems—a review. Polymer Composites, 41(2), 430-442.

Tewari, S., Reshamwala, S. M., Bhatt, L., & Kale, R. D. (2023). Vegan leather: a sustainable reality or a marketing gimmick? Environmental Science and Pollution Research, 1-15. https://doi.org/10.1007/s11356-023-31491-8

Truong, V., Nguyen, P. T., & Truong, V. T. (2021). The prediction model of nozzle height in liquid jet-drop method to produce Ca-alginate beads under microencapsulation process. Journal of Food Process Engineering, 44(4), e13663. https://doi.org/10.1111/jfpe.13663

Xu, Y.J., Qu, L.Y., Liu, Y., & Zhu, P., (2021). An overview of alginates as flame-retardant materials: Pyrolysis behaviors, flame retardancy, and applications. Carbohydrate polymers, 260, 117827. https://doi.org/10.1016/j.carbpol.2021.117827

Whistler, R. (Ed.). (2012). Industrial gums: polysaccharides and their derivatives. Elsevier.

Wang, B., Wan, Y., Zheng, Y., Lee, X., Liu, T., Yu, Z., & Gao, B. (2019). Alginate-based composites for environmental applications: a critical review. Critical reviews in environmental science and technology, 49(4), 318-356. https://doi.org/10.1080/10643389.2018.1547621

Zhang, X., Wang, X., Fan, W., Liu, Y., Wang, Q., & Weng, L. (2022). Fabrication, property and application of calcium alginate fiber: a review. Polymers, 14(15), 3227. https://doi.org/10.3390/polym14153227

Zhang, C., Grossier, R., Candoni, N., & Veesler, S. (2021). Preparation of alginate hydrogel microparticles by gelation introducing cross-linkers using droplet-based microfluidics: a review of methods. Biomaterials Research, 25(1), 25-41.
https://doi.org/10.1186/s40824-021-00243-5