Sự tồn tại và tính nửa liên tục trên của nghiệm bài toán cân bằng tách
Abstract
This paper considers split equilibrium problems. By using the well-known KKM-Fan lemma, existence conditions for the considered problems are established. When the objective functions and the constraint maps of such problems are perturbed by parameters, sufficient conditions under which the solution maps being upper semicontinuous are investigated.
Tóm tắt
Bài báo xem xét bài toán cân bằng tách. Bằng cách sử dụng bổ đề KKM-Fan, các điều kiện tồn tại cho bài toán cân bằng tách được thiết lập. Khi hàm mục tiêu và ánh xạ ràng buộc của các bài toán đang xét bị nhiễu bởi tham số, các điều kiện đủ đảm bảo tính nửa liên tục trên của ánh xạ nghiệm cũng được nghiên cứu.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Anh, L. Q., Thanh Duoc, P., & Tam, T. N. (2018a). On Hölder continuity of solution maps to parametric vector primal and dual equilibrium problems. Optimization, 67(8), 1169-1182. https://doi.org/10.1080/02331934.2018.1466298
Anh, L. Q., & Duy, T. Q. (2018b). On penalty method for equilibrium problems in lexicographic order. Positivity, 22, 39-57. https://doi.org/10.1007/s11117-017-0496-7
Anh, L. Q., Quoc, T. Q., & Hien, D. V. (2019). Stability for parametric vector quasi-equilibrium problems with variable cones. Numerical Functional Analysis and Optimization, 40(4), 461-483. https://doi.org/10.1080/01630563.2018.1556688
Anh, L. Q., Duoc, P. T., & Tam, T. N. (2020). On the stability of approximate solutions to set-valued equilibrium problems. Optimization, 69(7-8), 1583-1599. https://doi.org/10.1080/02331934.2019.1646744
Anh, L. Q., Duoc, P. T., Tam, T. N., & Thang, N. C. (2021). Stability analysis for set-valued equilibrium problems with applications to Browder variational inclusions. Optimization Letters, 15, 613-626. https://doi.org/10.1007/s11590-020-01604-0
Anh, L. Q., Linh, H. M., & Tam, T. N. (2022). Semicontinuity of Solutions and Well-Posedness Under Perturbations for Equilibrium Problems with Nonlinear Inequality Constraints. Bulletin of the Brazilian Mathematical Society, New Series, 751–763.
https://doi.org/10.1007/s00574-021-00281-6
Anh, L. Q., Tam, T. N., & Danh, N. H. (2023a). On Lipschitz continuity of approximate solutions to set-valued equilibrium problems via nonlinear scalarization. Optimization, 72(2), 439-461. https://doi.org/10.1080/02331934.2021.1970753
Anh, L. Q., & Duy, T. Q. (2023b). Regularization of vector equilibrium problems. Optimization Letters, 17(3), 699-720. https://doi.org/10.1007/s11590-022-01899-1
Aubin, J. P., & Frankowska, H. (2009). Set-valued analysis. Springer Science & Business Media. https://doi.org/10.1007/978-0-8176-4848-0
Blum, E., & Oettli, W. (1994). From optimization and variational inequalities to equilibrium problems, Mathematics Student, 63,123-145.
Bigi, G., Castellani, M., Pappalardo, M., & Passacantando, M. (2019). Nonlinear programming techniques for equilibria. Springer International Publishing. https://doi.org/10.1007/978-3-030-00205-3
Byrne, C. (2002). Iterative oblique projection onto convex sets and the split feasibility problem. Inverse problems, 18(2), 441. https://doi.org/10.1088/0266-5611/18/2/310
Byrne, C. (2003). A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse problems, 20(1), 103.
https://doi.org/10.1088/0266-5611/20/1/006
Censor, Y., & Elfying, T. (1994). A multiprojection algorithm using Bregman projections in a product space. Numerical Algorithms, 8(2), 221–239.
https://doi.org/10.1007/BF02142692
Censor, Y., & Segal, A. (2008). Iterative projection methods in biomedical inverse problems. Mathematical methods in biomedical imaging and intensity-modulated radiation therapy (IMRT), 10, 65-96.
Censor, Y., Gibali, A., & Reich, S. (2012). Algorithms for the split variational inequality problem. Numerical Algorithms, 59, 301-323. https://doi.org/10.1007/s11075-011-9490-5
Cotrina, J., Théra, M., & Zúñiga, J. (2020). An existence result for quasi-equilibrium problems via Ekeland’s variational principle. Journal of Optimization Theory and Applications, 187(2), 336-355.
https://doi.org/10.1007/s10957-020-01764-0
Eslamizadeh, L., & Naraghirad, E. (2020). Existence of solutions of set-valued equilibrium problems in topological vector spaces with applications. Optimization Letters, 14(1), 65-83. https://doi.org/10.1007/s11590-019-01488-9
Fan, K. (1972). A minimax inequality and applications. In Shisha, O. (Eds), Inequalities III (pp. 103-113). Academic Press, New York
Giannessi, F. (Ed.). (2013). Vector variational inequalities and vector equilibria: mathematical theories (Vol. 38). Springer Science & Business Media.
Hu, S., & Papageorgiou, N. S. (1997). Handbook of Multivalued Analysis. Volume I: Theory, Kluwer, Dordrecht, The Netherlands. https://doi.org/10.1007/978-1-4615-6359-4
Kassay, G., & Kolumban, J. (1996). On a generalized sup-inf problem. Journal of Optimization Theory and Applications, 91(3), 651-670.
Kassay, G., & Rădulescu, V. (2018). Equilibrium problems and applications. Academic Press.
Morgan, J., & Scalzo, V. (2004). Pseudocontinuity in optimization and nonzero-sum games. Journal of Optimization Theory and Applications, 120(1), 181-197. https://doi.org/10.1023/B:JOTA.0000012738.90889.5b
Muu, L. D., & Oettli, W. (1992). Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Analysis: Theory, Methods & Applications, 18(12), 1159-1166. https://doi.org/10.1016/0362-546X(92)90159-C
Tam, T. N. (2022). On Hölder continuity of solution maps to parametric vector Ky Fan inequalities. TOP, 30(1), 77-94. https://doi.org/10.1007/s11750-021-00602-4
Tam, T. N. (2023). Hölder continuity of solution maps to parametric set-valued Ky Fan inequalities. Optimization, Online First. https://doi.org/10.1080/02331934.2022.2122716
Oyewole, O. K., & Mewomo, O. T. (2020). Existence results for new generalized mixed equilibrium and fixed-point problems in Banach spaces. Nonlinear Functional Analysis and Applications, 273-301.