Bào chế hệ vi hạt từ fibroin tơ tằm phối trộn polymer định hướng ứng dụng dẫn truyền thuốc đường uống
Abstract
Silk fibroin is a biomaterial commonly utilized in numerous medical applications. However, limited information has been reported on fibroin usage in oral drug delivery. Thus, this study was conducted. Fibroin was successfully extracted from silk cocoons with a 20.08% extraction efficiency. The fibroin nanoparticles, functionalized with poly(vinyl alcohol) or Eudragit E100, were effectively formulated by the desolvation method, with nano-sizes and high stability in the simulated gastrointestinal condition. The Fourier-transform infrared (FT-IR) spectroscopy was used to examine the system structure, which revealed the distinctive peaks of all components. Using a scanning electron microscope (SEM), the nanoparticle system was spherical. In conclusion, the research successfully developed novel polymer-functionalized silk fibroin nanoparticles for oral drug delivery.
Tóm tắt
Fibroin tơ tằm là một vật liệu y sinh đã được ứng dụng phổ biến trên thế giới. Tuy nhiên, vẫn còn ít nghiên cứu đề cập đến việc bào chế hệ vi hạt từ fibroin nhằm dẫn truyền thuốc đường uống. Đây là lý do để nghiên cứu này được thực hiện. Fibroin đã được chiết thành công từ kén tơ tằm Việt Nam với hiệu suất chiết 20,08% với các đặc tính lý hóa đặc trưng của phân tử fibroin. Hệ vi hạt fibroin phối trộn poly(vinyl alcohol) và Eudragit E100 được bào chế thành công bằng phương pháp đổi dung môi với kích thước nano và bền vững trong môi trường mô phỏng đường tiêu hóa. Cấu trúc hệ được phân tích bằng quang phổ hồng ngoại (Fourier-transform infrared spectroscopy, FT-IR) cho thấy đầy đủ các mũi đặc trưng của các thành phần trong hệ. Hình dạng hệ vi hạt được quan sát bằng hiển vi điện tử quét (SEM) cho thấy hệ có dạng hình cầu. Tóm lại, nghiên cứu đã bào chế thành công hệ vi hạt từ fibroin tơ tằm phối trộn polymer định hướng dẫn truyền thuốc đường uống.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Ausar, S. F., Bianco, I. D., Castagna, L. F., Alasino, R. V., & Beltramo, D. M. (2003). Interaction of a cationic acrylate polymer with caseins: Biphasic effect of Eudragit E100 on the stability of casein micelles. Journal of Agricultural and Food Chemistry, 51(15), 4417–4423. https://doi.org/10.1021/jf034070b
Chomchalao, P., Nimtrakul, P., Pham, D. T., & Tiyaboonchai, W. (2020). Development of amphotericin B-loaded fibroin nanoparticles: A novel approach for topical ocular application. Journal of Materials Science, 55(12), 5268–5279.
https://doi.org/10.1007/s10853-020-04350-x
Date, A. A., Hanes, J., & Ensign, L. M. (2016). Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. Journal of Controlled Release, 504–526.
Homayun, B., & Choi, X. L., & H.-J. (2019). Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals Bahman. Pharmaceutics, 11(3),129.
Jeencham, R., Humenik, M., Sutheerawattananonda, M., Pham, D. T., & Tiyaboonchai, W. (2023). Tunable drug loading and release from blended chitosan/silk fibroin-based daily disposable contact lenses. Songklanakarin Journal of Science and Technology, 44, 1373–1380. https://doi.org/10.14456/sjst-psu.2022.178
Mustafin, R. I., & Kabanova, T. V. (2004). Synthesis and characterization of an interpolyelectrolyte complex based on Eudragit E100 and L100 copolymers. Pharmaceutical Chemistry Journal, 38(11), 625–627.
https://doi.org/10.1007/s11094-005-0044-9
Nguyen, N. Y., Luong, H. V. T., Pham, D. T., Tran, T. B. Q., & Dang H. G. (2022). Chitosan‑functionalized Fe3O4@SiO2 nanoparticles as a potential drug delivery system. Chemical Papers, 76(7), 4561–4570.
Nguyen, N. Y., Nguyen, T. N. P., Huyen, N. N., Tran, V. D., Quyen, T. T. B., Luong, H. V. T., & Pham, D. T. (2023). Onto the differences in formulating micro-/nanoparticulate drug delivery system from Thai silk and Vietnamese silk: A critical comparison. Heliyon, 9(6), e16966. https://doi.org/10.1016/J.HELIYON.2023.E16966
Pandya, B. G. S., & Vidyasagar, G. (2012). Poly vinyl alcohol Hydrogel and its Pharmaceutical and Biomedical Applications: A Review. International Journal of Pharmaceutical Research, 20–26.
Patra, Ch. N., Priya, R., Swain, S., Kumar Jena, G., Panigrahi, K. C., & Ghose, D. (2017). Pharmaceutical significance of Eudragit: A review. Future Journal of Pharmaceutical Sciences, 3(1), 33–45. https://doi.org/10.1016/j.fjps.2017.02.001
Pham, D. T., Ha, T. K. Q., Nguyen, M. Q., Tran, V. D., Nguyen, V. B., & Quyen, T. T. B. (2022). Silk fibroin nanoparticles as a versatile oral delivery system for drugs of different biopharmaceutics classification system (BCS) classes: A comprehensive comparison. Journal of Materials Research, 37(23), 4169–4181. https://doi.org/10.1557/S43578-022-00782-0
Pham, D. T., Nguyen, T. L., Nguyen, T. T. L., Nguyen, T. T. P., Ho, T. K., & Nguyen, N. Y. (2020a). Polyethylenimine-functionalized fibroin nanoparticles as a potential oral delivery system for BCS class-IV drugs, a case study of furosemide. Journal of Materials Science, 58, 9660–9674.
https://doi.org/10.1007/s10853-023-08640-y
Pham, D. T., Saelim, N., Cornu, R., Béduneau, A., & Tiyaboonchai, W. (2020b). Crosslinked Fibroin Nanoparticles: Investigations on Biostability, Cytotoxicity, and Cellular Internalization. Pharmaceuticals (Basel, Switzerland), 13(5), 86. https://doi.org/10.3390/ph13050086
Pham, D. T., Saelim, N., & Tiyaboonchai, W. (2018). Crosslinked fibroin nanoparticles using EDC or PEI for drug delivery: Physicochemical properties, crystallinity and structure. Journal of Materials Science, 53(20), 14087–14103. https://doi.org/10.1007/s10853-018-2635-3
Pham, D. T., & Tiyaboonchai, W. (2020). Fibroin nanoparticles: A promising drug delivery system. Drug Delivery, 27(1), 431–448. https://doi.org/10.1080/10717544.2020.1736208
Pham, D. T., & Tiyaboonchai, W. (2021). Fibroin-coated poly(ethylenimine)-docusate nanoparticles as a novel drug delivery system. Current Science, 121(6), 775–780. https://doi.org/10.18520/CS/V121/I6/775-780
Reis, E. F. dos, Campos, F. S., Lage, A. P., & Leite, R. C. (2006). Synthesis and Characterization of Poly (Vinyl Alcohol) Hydrogels and Hybrids for rMPB70 Protein Adsorption. Materials Research, 9(2),185–191.
Remiš, T., Bělský, P., Kovářík, T., Kadlec, J., Azar, M. G., Medlín, R., Vavruňková, V., Deshmukh, K., & Sadasivuni, K. K. (2021). Study on structure, thermal behavior and viscoelastic properties of nanodiamond‐reinforced poly (Vinyl alcohol) nanocomposites. Polymers, 13(9), 1426. https://doi.org/10.3390/polym13091426
Rivera-Hernández, G., Antunes-Ricardo, M., Martínez-Morales, P., & Sánchez, M. L. (2021). Polyvinyl alcohol based-drug delivery systems for cancer treatment. International Journal of Pharmaceutics, 600, 120478. https://doi.org/10.1016/j.ijpharm.2021.120478
Sonntag, H., Ehmke, B., Miller, R., & Knapschinski, L. (1982). Steric stabilization of polyvinyl alcohol adsorbed on silica/water and water/oil interfaces. Advances in Colloid and Interface Science, 16(1), 381–390. https://doi.org/10.1016/0001-8686(82)85026-4
Yang, P., Dong, Y., Huang, D., Zhu, C., Liu, H., Pan, X., & Wu, C. (2019). Silk fibroin nanoparticles for enhanced bio-macromolecule delivery to the retina. Pharmaceutical Development and Technology, 24(5), 575–583. https://doi.org/10.1080/10837450.2018.1545236