Phan Kim Định , Vạng Thành Thái , Tô Hoàng Duy , Đỗ Trâm Anh Trần Chí Linh *

* Tác giả liên hệ (tclinh@ctu.edu.vn)

Abstract

The present study was carried out to determine the phytochemistry and biological activity of extracts from the above-ground parts (stems and leaves), and the leaves and stems of Alternanthera sessilis. Antioxidant activity is determined based on neutralising or inhibiting abiotic free radicals. Anti-inflammatory activity was determined based on its ability to protect red blood cell membranes and inhibit bovine serum albumin denaturation. The antibacterial activity was determined by determining the antibacterial ring diameter, the minimum inhibitory concentration and the minimum bactericidal concentration. Alternanthera sessilis extracts have antioxidant and anti-inflammatory activities with EC50 values ranging from 50.60±0.29 to 125.58±7.12 µg/mL. Alternanthera sessilis extracts have the ability to inhibit Gram-positive bacteria more effectively than Gram-negative bacteria with minimum bactericidal concentrations ranging from 250 to 2,000 µg/mL. The antioxidant, anti-inflammatory and antibacterial activities of Alternanthera sessilis extracts are related to the polyphenols, flavonoids and alkaloids content. These results highlighted the potential use of Alternanthera sessilis extracts as a natural antioxidant, anti-inflammatory and antimicrobial agent.

Keywords: Alternanthera sessilis, anti-inflammatory, antimicrobial, antioxidant

Tóm tắt

Nghiên cứu được thực hiện để xác định hóa thực vật và hoạt tính sinh học của các cao thân lá, thân và lá rau dệu. Hoạt tính kháng oxy hóa được xác định dựa vào hoạt động trung hòa hoặc ức chế các gốc tự do phi sinh học. Hoạt tính kháng viêm được xác định dựa trên khả năng bảo vệ màng tế bào hồng cầu và ức chế sự biến tính protein. Hoạt tính kháng khuẩn được xác định dựa vào đường kính vòng kháng khuẩn, nồng độ ức chế tối thiểu, nồng độ diệt khuẩn tối thiểu. Các cao rau dệu có hoạt tính kháng oxy hóa, kháng viêm với giá trị EC50 dao động từ 50,60±0,29 đến 125,58±7,12 µg/mL. Các cao rau dệu ức chế vi khuẩn Gram dương hiệu quả hơn Gram âm, nồng độ diệt khuẩn tối thiểu dao động từ 250 đến 2.000 µg/mL. Hoạt động kháng oxy hóa, kháng viêm và kháng khuẩn của rau dệu có liên quan đến hàm lượng polyphenol, flavonoid và alkaloid. Kết quả này cho thấy tiềm năng sử dụng cao rau dệu như chất kháng oxy hóa, kháng viêm, kháng khuẩn tự nhiên.

Từ khóa: Kháng khuẩn, kháng oxy hóa, kháng viêm, rau dệu

Article Details

Tài liệu tham khảo

Ahuja, I., Kissen, R., & Bones, A. M. (2012). Phytoalexins in defense against pathogens. Trends in Plant Science, 17, 73–90. https://doi.org/10.1016/j.tplants.2011.11.002.

Bag, G. C., Devi, P. G., & Bhaigyabati, T. (2015). Assessment of total flavonoid content and antioxidant activity of methanolic rhizome extract of three Hedychium species of Manipur Valley. International Journal of Pharmaceutical Sciences Review and Research, 30(1), 154-159. http://globalresearchonline.net/journalcontents/v30-1/28.pdf.

Benzie, L. F. F., & Strain. J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of ‘atioxidant power: The FRAP assay. Analytical Biochemistry, 239, 70-76. https://doi.org/10.1006/abio.1996.0292.

Bộ Y Tế (2018). Dược điển Việt Nam V. Nhà xuất bản Y học.

Dissanayake, D. M. R. H., Deraniyagala, S. A, Hettiarachchi, C. M., & Thiripuranathar, G. (2018). The study of antioxidant and antibacterial properties of skin , seeds and leaves of the sri lankan variety of pumpkin. International Organization of Scientific Research, 8(2), 43-48.

Heinrich, M., Mah, J., & Amirkia, V. (2021). Alkaloids used as medicines: Structural phytochemistry meets biodiversity-an update and forward look. Molecules, 26(7), 1-18. https://doi.org/10.3390/molecules26071836.

Jan, R., Asaf, S., Numan, M., & Lubna Kim, K. -M. (2021). Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy, 11, 968-999. https://doi.org/10.3390/ agronomy11050968.

Kota, S., Govada, V. R., Anantha, R. K., & Verma, M. K. (2017). An investigation into phytochemical constituents, antioxidant, antibacterial and anti-cataract activity of Alternanthera sessilis, a predominant wild leafy vegetable of South India. Biocatalysis and Agricultural Biotechnology, 10, 197-203. https://doi.org/10.1016/j.bcab.2017.03.008.

Michel, T., Destandau, E., Le Floch, G., Lucchesi, M. E., & Elfakir, C. (2012). Antimicrobial, antioxidant and phytochemical investigations of sea buckthorn (Hippophaë rhamnoides L.) leaf, stem, root and seed. Food Chemistry, 131(3), 754-760. https://doi.org/10.1016/j.foodchem.2011.09.029.

Miyamoto, A., Nakano, S., Nagai, K., Kishikawa, N., Ohyama, K., Aoyama, T., Matsumoto, Y., & Kuroda, N. (2017). Development of an evaluation method for hydroxyl radical scavenging activities using sequential injection analysis with chemiluminescence detection. Analytical Sciences, 33(6), 697-701. DOI: 10.2116/analsci.33.697.

Razali, M. N. N., Teh, S. S., Mah, S. H., Yong, Y. K., Ng, C. T., Lim, Y. M., & Fong, L.Y. (2022). Protective effects of Alternanthera sessilis ethanolic extract against TNF-α or H2O2-induced endothelial activation in human aortic endothelial cells. Evidence-Based Complementary and Alternative Medicine, 8738435, 1-12. https://doi.org/10.1155/2022/8738435.

Muniandy, K., Gothai, S., Badran, K. M. H., Kumar, S. S., Esa, N. M., & Arulselvan, P. (2018b). Suppression of proinflammatory cytokines and mediators in LPS-induced RAW 264.7 macrophages by stem extract of Alternanthera sessilis via the inhibition of the NF-κB pathway. Journal of Immunology Research, 2018, 1-12. https://doi.org/10.1155/2018/3430684.

Muniandy, K., Gothai, S., Tan, W. S. (2018a). In vitro wound healing potential of stem extract of Alternanthera sessilis. Evidence-based Complementary and Alternative Medicine, 2018, 1-13. https://doi.org/10.1155/2018/3142073.

Nascimento, G. G. F, Locatelli, J., Freitas, P. C, & Silva, G. L. (2000). Antibacterial activity of plant extracts and phytochemicals on antibiotic- resistant bacteria. Brazilian Journal of Microbiology, 31(4), 247-256. https://doi.org/10.1590/S1517-83822000000400003.

Nenadis, N., Wang, L. F., Tsimidou, M., & Zhang, H. I. (2004). Estimation of scavenging activity of phenolic compounds using the ABTS•+ assay. Journal of Agricultural and Food Chemistry, 52(15), 4669-4674. https://doi.org/10.1021/jf0400056.

Ngan, L. T., Moon, J. K., Kim, J. H., Shibamoto, T., & Ahn, Y. J. (2012). Growth-inhibiting effects of Paeonia lactiflora root steam distillate constituents and structurally related compounds on human intestinal bacteria. World Journal of Microbiology and Biotechnology, 28(4), 1575-1583. DOI: 10.1007/s11274-011-0961-6.

Phụng, N. K. P. (2007). Phương pháp cô lập hợp chất hữu cơ. Nhà xuất bản Đại học Quốc gia Tp. Hồ Chí Minh.

Patel, M., Murugananthan, S., & Gowda, S. (2012). In vivo animal models in preclinical evaluation of anti-inflammatory activity-a review. International Journal of Pharmaceutical Research and Allied Sciences, 1(2), 1-5. https://doi.org/10.3390/ijms20184367.

Hộ, P. H. (2000). Cây cỏ Việt Nam. Nhà xuất bản Trẻ, Thành phố Hồ Chí Minh.

Ponce, A. G., Roura, S. I., del Valle, C. E., & Moreira, M. R. (2008). Antimicrobial and antioxidant activities of edible coatings enriched with natural plant extracts: in vitro and in vivo studies. Postharvest Biology and Technology, 49(2), 294-300. https://doi.org/10.1016/j.postharvbio.2008.02.013.

Prieto, P., Pineda, M. & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of phosphomolybdenum complex: Specific application for the determination of Vitamin E. Analytical Biochemistry, 269(2), 337-341. https://doi.org/10.1006/abio.1999.4019.

Chaity, F. R., Khatun, M., & Rahman, M.S. (2016). In vitro membrane stabilizing, thrombolytic and antioxidant potentials of Drynaria quercifolia L., a remedial plant of the Garo tribal people of Bangladesh. BMC Complementary Medicine and Therapies, 16, 184-193. DOI: 10.1186/s12906-016-1170-5.

Shah, M., Parveen, Z., Khan, M. R. (2017). Evaluation of antioxidant, antiinflammatory, analgesic and antipyretic activities of the stem bark of Sapindus mukorossi. BMC Complementary and Alternative Medicine, 17, 526-532. DOI: 10.1186/s12906-017-2042-3.

Shamsa, F., Monsef, H., Ghamooshi, R., & Verdian-rizi, M. (2008). Short report spectrophotometric determination of total alkaloids in some Iranian medicinal plants. Thai Journal of Pharmaceutical Sciences, 32, 17-20. https://www.thaiscience.info/journals/Article/TJPS/10576423.pdf.

Sharma, O. P., & Bhat, T. K. (2009). DPPH antioxidant assay revisited. Food Chemistry, 113, 1202-1205. https://doi.org/10.1016/j.foodchem.2008.08.008.

Singleton, V. L., Orthofer, R., & Lamuela–Raventos, R. M. (1999). Analysis of total phenol and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol, 299, 152-178.
https://doi.org/10.1016/S0076-6879(99)99017-1.

Sreejayan, N. & Rao, M. N. A. (1997). Nitric oxide scavenging by curcuminoids. Journal of Pharmacy and Pharmacology, 49, 105-107. DOI: 10.1111/j.2042-7158.1997.tb06761.x.

Tungmunnithum, D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines (Basel), 5(3), 93-109. DOI: 10.3390/medicines5030093.

Twaij, B. M., & Hasan, M. N. (2022). Bioactive secondary metabolites from plant sources: Types, synthesis, and their therapeutic uses. International Journal of Plant Biology, 13, 4-14. https:// doi.org/10.3390/ijpb13010003.

Ullah, H. M., Zaman, S., Juhara, F., Akter, L., Tareq, S. M., Masum, E. H., & Bhattacharjee, R. (2014). Evaluation of antinociceptive, in-vivo & in-vitro anti-inflammatory activity of ethanolic extract of Curcuma zedoaria rhizome. BMC Complementary and Alternative Medicine, 14, 346-354. DOI: 10.1186/1472-6882-14-346.

Wahyuningsih, S. P. A., Savira, N. I. I., Anggraini, D. W., Winarni, D., Suhargo, L., Kusuma, B. W. A., & Mwendolwa, A. A. (2020). Antioxidant and nephroprotective effects of okra pods extract (Abelmoschus esculentus L.) against lead acetate-induced toxicity in mice. Scientifica, 2020, 1-10. DOI: 10.1155/2020/4237205.