Nguyễn Cẩm Hường , Huỳnh Thị Ngọc Bình , Trần Thanh Trúc Trần Chí Nhân *

* Tác giả liên hệ (tcnhan@ctu.edu.vn)

Abstract

To improve the recovery yield of dietary fiber obtained from da xanh pomelo (Citrus maxima (Burm.) Merr.), the study was conducted to evaluate the pretreatment process with ethanol 96o on the efficiency of fiber enrichment, expressed in terms of total dietary fiber (TDF), soluble dietary fiber (SDF) and insoluble dietary fiber (IDF) content. The investigated conditions consisted of (i) soaking time (10 - 25 minutes), (ii) soaking temperature (50 - 78.3oC), (iii) materials/ethanol ratio (1/1.25 - 1/5 g/mL) and drying temperature (50 - 70oC). Thereby, pretreatment revealed a greater efficiency of 15.02%, and 49.04 % at TDF, and SDF content than those without pretreatment. The results of the investigation of pretreatment conditions of pomelo’s albedo with ethanol 96o illustrated that soaking overnight (12 hours) at room temperature (30oC) and raw materialethanol ratio of 1:2.5 g/mL followed by drying at 70oC in 5 hours reached the highest level of IDF (42.39 ± 0.10%), TDF (74.68 ± 0.56%) and SDF (32.29 ± 0.54%).

Keywords: Da xanh pomelo, insoluble dietary fiber, pretreatment, soluble dietary fiber, total dietary fiber

Tóm tắt

Nhằm tăng cường hiệu suất thu hồi chất xơ từ vỏ bưởi da xanh (Citrus maxima (Burm.) Merr.), nghiên cứu đã được thực hiện để đánh giá ảnh hưởng của quá trình tiền xử lý ethanol 96o đến hiệu quả làm giàu chất xơ trong vỏ bưởi da xanh, thể hiện qua hàm lượng chất xơ tổng (TDF), chất xơ tan (SDF) và chất xơ không tan (IDF). Điều kiện khảo sát bao gồm (i) thời gian ngâm (10 - 25 phút); (ii) nhiệt độ ngâm (50 - 78,3oC); (iii) tỷ lệ nguyên liệu/ethanol (1/1,25 - 1/5 g/mL), (iv) nhiệt độ sấy (50 - 70oC). Thông qua đó, tiền xử lý mang lại hiệu quả vượt trội hơn về hàm lượng TDF và SDF thu nhận lần lượt là 15,02% và 49,04% so với không qua tiền xử lý. Kết quả khảo sát điều kiện tiền xử lý vỏ bưởi da xanh bằng ethanol 96o cho thấy ngâm qua đêm (12 giờ) ở nhiệt độ phòng (30oC) với tỷ lệ nguyên liệu:ethanol 1:2,5 g/mL, sau đó sấy ở 70oC trong 5 giờ đạt được giá trị cao nhất của IDF (42,39 ± 0,10%), TDF (74,68 ± 0,56%) và SDF (32,29 ± 0,54%).

Từ khóa: Bưởi da xanh, chất xơ hòa tan, chất xơ không tan, chất xơ tổng số, tiền xử lý

Article Details

Tài liệu tham khảo

Abirami, A., Nagarani, G., & Siddhuraju, P. (2014). Measurement of functional properties and health promoting aspects-glucose retardation index of peel, pulp and peel fiber from Citrus hystrix and Citrus maxima. Bioactive Carbohydrates and Dietary Fibre, 4(1), 16-26. https://doi.org/10.1016/j.bcdf.2014.06.001

Calvache, J. E. N., Fissore, E. N., Latorre, M. E., Soria, M., Pla, M. F. D. E., & Gerschenson, L. N. (2015). Obtention of dietary fibre enriched fractions from peach bagasse using ethanol pre-treatment and microwave drying. LWT-Food science and technology, 62(2), 1169-1176. https://doi.org/10.1016/j.lwt.2015.01.045

Chau, C. F., & Huang, Y. L. (2003). Comparison of the chemical composition and physicochemical properties of different fibers prepared from the peel of Citrus sinensis L. Cv. Liucheng. Journal of Agricultural and Food Chemistry, 51(9), 2615-2618. https://doi.org/10.1021/jf025919b

Chavan, P., Singh, A. K., & Kaur, G. (2018). Recent progress in the utilization of industrial waste and by‐products of citrus fruits: A review. Journal of Food Process Engineering, 41(8), e12895.

Galanakis, C. M. (2019). Dietary Fiber: Properties, Recovery, and Applications (1st Edition). Academic Press.

Huang, R., Cao, M., Guo, H., Qi, W., Su, R., & He, Z. (2014). Enhanced ethanol production from pomelo peel waste by integrated hydrothermal treatment, multienzyme formulation, and fed-batch operation. Journal of Agricultural and Food Chemistry, 62, 4643-4651. https://doi.org/10.1021/jf405172a

Jangam, S. V., Joshi, V. S., Mujumdar, A. S., & Thorat, B. N. (2008). Studies on dehydration of sapota (Achras zapota). Drying Technology, 26(3), 369-377. https://doi.org/10.1080/07373930801898190

Liew, S. Q., Ngoh, G. C., Yusoff, R., & Teoh, W. H. (2016). Sequential ultrasound-microwave assisted acid extraction (UMAE) of pectin from pomelo peels. International Journal of Biological Macromolecules, 93, 426-435. https://doi.org/10.1016/j.ijbiomac.2016.08.065

Liu, X., Guo, M., Cai, L. N., Liu, L., & Li, Y. Y. (2016). Study on the honey pomelo tea beverage with fruit peel and fruit grain. Food Research and Development, 37(23), 86-89.

Methacanon, P., Krongsin, J., & Gamonpilas, C. (2014). Pomelo (Citrus maxima) pectin: Effects of extraction parameters and its properties. Food Hydrocolloids, 35, 383-391. https://doi.org/10.1016/j.foodhyd.2013.06.018

Ouyang, H., Guo, B., Hu, Y., Li, L., Jiang, Z., Li, Q., Ni, H., Li, Z., & Zheng, M. (2023). Effect of ultra-high pressure treatment on structural and functional properties of dietary fiber from pomelo fruitlets. Food Bioscience, 52, 102436. https://doi.org/10.1016/j.fbio.2023.102436

Peerajit, P., Chiewchan, N., Davahastin, S. 2012). Effects of pretreatment methods on health-related functional properties of high dietary fibre powder from lime residues. Food Chemistry, 132 (2012), 1891-1898. https://doi.org/10.1016/j.foodchem.2011.12.022

Qin, L. S., Ngoh, G. C., Yusoff, R., & Teoh, W. H. (2017). Acid and deep eutectic solvent (DES) extraction of pectin from pomelo (Citrus grandis (L.) Osbeck) peels. Biocatalysis and Agricultural Biotechnology, 13, 1-11. https://doi.org/10.1016/j.bcab.2017.11.001

Reed, J. D. (2001). Effects of proanthocyanidins on digestion of fiber in forages. Rangeland Ecology & Management/Journal of Range Management Archives, 54(4), 466-473. https://doi.org/10.2307/4003118

Renard, C. M. (2005). Variability in cell wall preparations: Quantification and comparison of common methods. Carbohydrate Polymers, 60(4), 515-522. https://doi.org/10.1016/j.carbpol.2005.03.002

Sudham, M. L., Baskaran, V., & Leelavathi, K. (2007). Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chemistry, 104(2007), 686- 692. https://doi.org/10.1016/j.foodchem.2006.12.016

Tuan, N. T., Dang, L. N., Huong, B. T. C., & Danh, L. T. (2019). One step extraction of essential oils and pectin from pomelo (Citrus grandis) peels. Chemical Engineering & Processing: Process Intensification, 142, 107550. https://doi.org/10.1016/j.cep.2019.107550

Tươi, N. T. K., Nguyên, N. H. K., Trúc., T. T., & Toàn, H. T. (2021). Tính chất hóa lý của bưởi Da Xanh và bưởi Năm Roi được trồng ở Đồng bằng Sông Cửu Long. Tạp chí Khoa học Trường Đại học Cần Thơ, 57(CĐ Công nghệ thực phẩm), 118-126. https://doi.org/10.22144/ctu.jsi.2021.013

Wandee, Y., Uttapap, D., & Mischnick, P. (2018). Yield and structural composition of pomelo peel pectins extracted under acidic and alkaline conditions. Food Hydrocolloids, 87, 237-244. https://doi.org/10.1016/j.foodhyd.2018.08.017

Weng, C. Z. (2011). Study on the processing techniques of Guanxi pomelo juice and preserved peel (Master’s Dissertation). JiMei University.

Wuttipalakorn, P., Srichumpuang, W., & Chiewchan, N. J. D. T. (2009). Effects of pretreatment and drying on composition and bitterness of high-dietary-fiber powder from lime residues. Drying Technology, 27(1), 133-142. https://doi.org/10.1080/07373930802566036

Xiao, L., Ye, F., Zhou, T., & Zhao, G. (2021). Utilization of pomelo peels to manufacture value-added products: A review. Food Chemistry. 351 (2021), 129247. https://doi.org/10.1016/j.foodchem.2021.129247

Zhang, H., Cui, J., Tian, G., DiMarco-Crook, C., Gao, W., Zhao, C., Li, G., Lian, Y., Xiao, H., & Zheng, J. (2019). Efficiency of four different dietary preparation methods in extracting functional compounds from dried tangerine peel. Food Chemistry, 289, 340-350. https://doi.org/10.1016/j.foodchem.2019.03.063