Bào chế hydrogel từ hydroxypropyl methylcellulose chứa metformin và đánh giá tác dụng chống oxi hóa của chế phẩm
Abstract
This study aimed to prepare and evaluate the antioxidant effect of hydroxypropyl methylcellulose (HPMC) hydrogel containing metformin (HPMC-Met). Firstly, the UV-Vis spectroscopic quantitative method for metformin was established and validated at a wavelength of 233 nm, which possesses a standard curve of y = 0.8224x + 0.0194 (R2 = 0.9984) in a concentration range of 0.0625-2.0000 µg/mL, and satisfies the specificity, accuracy, and precision criteria. Next, the HPMC-Met was prepared and physicochemically evaluated, in terms of appearance, gelation time, viscosity, and drug release profile. Interestingly, these properties varied proportionally to the amount of HPMC and ethanol:water ratio. Furthermore, the metformin from HPMC-Met was released sustainably in phosphate buffered pH 5.5 during 150 mins. Finally, by using DPPH (2,2 diphenyl-1 picrylhydrazyl) antioxidant test, the IC50 of metformin and HPMC-Met was both approximately 70 µg/mL. In summary, the HPMC hydrogel might be a potential drug delivery system for metformin.
Tóm tắt
Nghiên cứu này nhằm bào chế và đánh giá tác dụng chống oxi hóa của hydrogel hydroxypropyl methylcellulose (HPMC) chứa metformin (HPMC-Met). Đầu tiên, phương pháp định lượng metformin bằng quang phổ UV-Vis được xây dựng và thẩm định, với bước sóng 233 nm, đường chuẩn y = 0,8224x + 0,0194 (R2 = 0,9984), khoảng nồng độ từ 0,0625 đến 2,0000 µg/mL và đạt tất cả các chỉ tiêu về độ đặc hiệu, độ đúng và độ chính xác. Tiếp theo, nghiên cứu tiến hành bào chế và đánh giá tính chất lý hóa (cảm quan, thời gian hóa gel, độ nhớt và khả năng giải phóng hoạt chất) của HPMC-Met. Kết quả cho thấy các tính chất này phụ thuộc tương quan vào hàm lượng HPMC và tỷ lệ ethanol:nước. Hơn nữa, quá trình giải phóng metformin trong dung dịch đệm pH 5,5 của HPMC-Met kéo dài và duy trì trong suốt 150 phút. Cuối cùng, bằng phương pháp chống oxi hóa DPPH (2,2-diphenyl-1 picrylhydrazyl), IC50 của metformin và HPMC-Met đều khoảng 70 µg/mL. Tóm lại, HPMC hydrogel có những tính chất tiềm năng như một hệ dẫn truyền thuốc nhằm vận chuyển metformin.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Agnes, C., Perveen, N., Atif Raza, S., & Hasan Khan, N. (2022). Quantitative Determination of Metformin Hydrochloride Tablet of Different Brands Available in Malaysia by UV Spectrophotometry and Fourier Transform Infrared Spectroscopy (FTIR). Biomedical J. Scientific & Tech. Research, 46(3), 37387–37401. https://doi.org/10.26717/BJSTR.2022.46.007345
Ardana, M., Aeyni, V., & Ibrahim, A. (2015). Formulasi dan Optimasi Basis Gel HPMC (Hidroxy Propyl Methyl Cellulose) dengan Berbagai Variasi Konsentrasi. Journal of Tropical Pharmacy and Chemistry, 3(2), 101–108. https://doi.org/10.25026/JTPC.V3I2.95
Beisswenger, P. J., Howell, S. K., Touchette, A. D., Lal, S., & Szwergold, B. S. (1999). Metformin reduces systemic methylglyoxal levels in type 2 diabetes. Diabetes, 48(1), 198–202. https://doi.org/10.2337/DIABETES.48.1.198
Cui, B., Liu, Q., Tong, L., & Feng, X. (2019). The effects of the metformin on inhibition of UVA-induced expression of MMPs and COL-I in human skin fibroblasts. European Journal of Inflammation, 17. https://doi.org/10.1177/2058739219876423/ASSET/IMAGES/LARGE/10.1177_2058739219876423-FIG1.JPEG
Dhawan, S., Medhi, B., & Chopra, S. (2009). Formulation and Evaluation of Diltiazem Hydrochloride Gels for the Treatment of Anal Fissures. Scientia Pharmaceutica 2009, Vol. 77, Pages 465-482, 77(2), 465–482. https://doi.org/10.3797/SCIPHARM.0903-10
Hiremath, P., Nuguru, K., & Agrahari, V. (2019). Material Attributes and Their Impact on Wet Granulation Process Performance. Handbook of Pharmaceutical Wet Granulation: Theory and Practice in a Quality by Design Paradigm, 263–315. https://doi.org/10.1016/B978-0-12-810460-6.00012-9
Houstis, N., Rosen, E. D., & Lander, E. S. (2006). Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature, 440(7086), 944–948. https://doi.org/10.1038/NATURE04634
Huynh, D. T. M., Le, M. N. T., De Tran, V., & Pham, D. T. (2022). Antibacterial hydrogel containing Piper betle L. extract for acne treatment, an ex vivo investigation. Pharmaceutical Sciences Asia, 49(4), 381–389. https://doi.org/10.29090/PSA.2022.04.22.061
Mandal, U., & Pal, T. K. (2008). Sustained Release of Metformin HCl from Hydroxy Propyl Methyl Cellulose Matrices: Formulation and in vitro Evaluation. Asian Journal of Chemistry, 20(2), 1163–1174.
Noval, N., Rosyifa, R., & Annisa, A. (2020). Effect of HPMC Concentration Variation as Gelling Agent on Physical Stability of Formulation Gel Ethanol Extract Bundung Plants (Actinuscirpus Grossus). https://doi.org/10.4108/EAI.23-11-2019.2298326
Obi, B. C., Okoye, T. C., Okpashi, V. E., Igwe, C. N., & Alumanah, E. O. (2015). Comparative Study of the Antioxidant Effects of Metformin, Glibenclamide, and Repaglinide in Alloxan-Induced Diabetic Rats. Journal of Diabetes Research, 2016, 1–5.
Pelen, S., Wullur, A., & Citraningtyas, G. (2016). Formulasi Sediaan Gel Antijerawat Minyak Atsiri Kulit Batang Kayu Manis (Cinnamomum Burmanii) Dan Uji Aktivitas Terhadap Bakteri Staphylococcus Aureus. Pharmacon UNSRAT, 5(4), 159245.
Pham, D. T., Huynh, Q. C., Lieu, R., Nguyen, V. B., De Tran, V., & Thuy, B. T. P. (2023). Controlled-Release Wedelia trilobata L. Flower Extract Loaded Fibroin Microparticles as Potential Anti-Aging Preparations for Cosmetic Trade Commercialization. Clinical, Cosmetic and Investigational Dermatology, 16, 1109–1121. https://doi.org/10.2147/CCID.S405464
Pham, D. T., Nguyen, D. X. T., Lieu, R., Huynh, Q. C., Nguyen, N. Y., Quyen, T. T. B., & Tran, V. De. (2023). Silk nanoparticles for the protection and delivery of guava leaf (Psidium guajava L.) extract for cosmetic industry, a new approach for an old herb. Https://Doi.Org/10.1080/10717544.2023.2168793, 30(1), 2168793. https://doi.org/10.1080/10717544.2023.2168793
Pham, D. T., Phewchan, P., Navesit, K., Chokamonsirikun, A., Khemwong, T., & Tiyaboonchai, W. (2021). Development of Metronidazole-loaded In situ Thermosensitive Hydrogel for Periodontitis Treatment. Turkish Journal of Pharmaceutical Sciences, 18(4), 510. https://doi.org/10.4274/TJPS.GALENOS.2020.09623
Pham, D. T., Thao, N. T. P., Thuy, B. T. P., Tran, V. De, Nguyen, T. Q. C., & Nguyen, N. N. T. (2022). Silk fibroin hydrogel containing Sesbania sesban L. extract for rheumatoid arthritis treatment. Https://Doi.Org/10.1080/10717544.2022.2050848, 29(1), 882–888. https://doi.org/10.1080/10717544.2022.2050848
Rehman, K., & Zulfakar, M. H. (2014). Recent advances in gel technologies for topical and transdermal drug delivery. Drug Development and Industrial Pharmacy, 40(4), 433–440. https://doi.org/10.3109/03639045.2013.828219
Reiter, R. J. (1995). Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 9(7), 526–533. https://doi.org/10.1096/fasebj.9.7.7737461
Ruggiero-Lopez, D., Lecomte, M., Moinet, G., Patereau, G., Lagarde, M., & Wiernsperger, N. (1999). Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end product formation. Biochemical Pharmacology, 58(11), 1765–1773. https://doi.org/10.1016/S0006-2952(99)00263-4
Shekhar, T., & Anju, G. (2014). Antioxidant Activity by DPPH Radical Scavenging Method of Ageratum conyzoides Linn. Leaves. American Journal of Ethnomedicine, 1(4), 244–249.
Tanaka, Y., Uchino, H., Shimizu, T., Yoshii, H., Niwa, M., Ohmura, C., Mitsuhashi, N., Onuma, T., & Kawamori, R. (1999). Effect of metformin on advanced glycation endproduct formation and peripheral nerve function in streptozotocin-induced diabetic rats. European Journal of Pharmacology, 376(1–2), 17–22. https://doi.org/10.1016/S0014-2999(99)00342-8