Nguyên lý biến phân Ekeland cho hàm có giá trị khoảng dựa trên tính nửa liên tục outer
Abstract
In this paper, we give some extended versions of Ekeland’s variational principle for interval-valued functions on the completed metric spaces based on the outer semicontinuity. These results are novel and different from recent results on this topic. Many examples are given to compare and illustrate the main results.
Tóm tắt
Trong bài báo này, chúng tôi đưa ra các phiên bản mở rộng của nguyên lý biến phân Ekeland cho hàm có giá trị khoảng trên không gian mêtric đủ dựa trên tính nửa liên tục outer. Các kết quả này đã mang lại tính mới và khác biệt so với các kết quả nghiên cứu gần đây về chủ đề này. Nhiều ví dụ cụ thể được đưa ra để so sánh và minh họa cho kết quả chính.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Ahmad, I., Jayswal, A., Al-Homidan, S., & Banerjee, J. (2019). Sufficiency and duality in intervalvalued variational programming. Neural Computing and Applications, 31, 4423–4433. https://doi.org/10.1007/s00521-017-3307-y
Aubin, J. P., & Ekeland, I. (1984). Applied Nonlinear Analysis. Wiley, NewYork.
Chalco-Cano, Y., Rufían-Lizana, A., Román-Flores, H., & Jiménez-Gamero, M.D. (2013). Calculus for interval-valued functions using generalized Hukuhara derivative and applications. Fuzzy Sets and Systems, 219, 49–6. https://doi.org/10.1016/j.fss.2012.12.004
Ekeland, I. (1974). On the variational principle. Journal of Mathematical Analysis and Applications, 47(3), 324-353. https://doi.org/10.1016/0022-247X(74)90025-0
Ghosh, D. (2017). Newton method to obtain efficient solutions of the optimization problems with interval-valued objective functions. Journal of Applied Mathematics and Computing, 53, 709–731. DOI:10.1007/s12190-016-0990-2
Ghosh, D., Bhuiya, S. K., & Patra, L. K. (2018). A saddle point characterization of efficient solutions for interval optimization problems. Journal of Applied Mathematics and Computing, 58, 193–217. DOI:10.1007/s12190-017-1140-1
Ghosh, D., Chauhan, R. S., Mesiar, R., & Debnath, A. K., (2020). Generalized Hukuhara Gâteaux and Fréchet derivatives of interval-valued functions and their application in optimization with interval-valued functions. Information Sciences, 510, 317–340. https://doi.org/10.1016/j.ins.2019.09.023
Ghosh, D., Debnath, A. K., & Pedrycz, W. (2020). A variable and a fixed ordering of intervals and their application in optimization with interval-valued functions. International Journal of Approximate Reasoning, 121, 187–205. https://doi.org/10.1016/j.ijar.2020.03.004
Ghosh, D., Singh, A., Shukla, K. K., & Manchanda, K. (2019). Extended Karush-Kuhn-Tucker condition for constrained interval optimization problems and its application in support vector machines. Information Sciences, 504, 276–292. https://doi.org/10.1016/j.ins.2019.07.017
Gong, D., Sun, J., & Miao, Z. (2016). A set-based genetic algorithm for interval many-objective optimization problems. IEEE Transactions on Evolutionary Computation, 22, 47–60. DOI: 10.1109/TEVC.2016.2634625
Ishibuchi, H., & Tanaka, H. (1990). Multiobjective programming in optimization of the interval objective function. European Journal of Operational Research, 48, 219–225. https://doi.org/10.1016/0377-2217(90)90375-L
Moore, R. E., (1966). Interval Analysis. New Jersey, Englewood Cliffs, Prentice-Hall.
Osuna-Gómez, R., Hernández-Jiménez, B., Chalco-Cano, Y., & Ruiz-Garzón, G. (2017). New efficiency conditions for multiobjective interval-valued programming problems. Information Sciences, 420, 235–248. https://doi.org/10.1016/j.ins.2017.08.022
Rockafellar, R. T., & Wets, R. J.-B. (2009). Variational Analysis. Springer, Berlin.
Stefanini, L., & Bede, B. (2009). Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Analysis: Theory, Methods & Applications, 71, 1311–1328. https://doi.org/10.1016/j.na.2008.12.005
Singh, D., Dar, B. A., & Kim, D. (2016). KKT optimality conditions in interval valued multiobjective programming with generalized differentiable functions. European Journal of Operational Research, 254, 29–39. https://doi.org/10.1016/j.ejor.2016.03.042
Wolfe, M., (2000). Interval mathematics, algebraic equations and optimization. Journal of Computational and Applied Mathematics, 124, 263–280.
https://doi.org/10.1016/S0377-0427(00)00421-0
Wu, H. C., (2007). The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function. European Journal of Operational Research, 176, 46–59. https://doi.org/10.1016/j.ejor.2005.09.007
Wu, H. C., (2008a). On interval-valued nonlinear programming problems. Journal of Mathematical Analysis and Applications, 338, 299–316. https://doi.org/10.1016/j.jmaa.2007.05.023
Wu, H. C. (2008). Wolfe duality for interval-valued optimization. Journal of Optimization Theory and Applications, 138, 497–509. https://doi.org/10.1007/s10957-008-9396-0
Zhang, C., & Huang, N. (2022). On Ekeland’s variational principle for interval-valued functions with applications. Fuzzy Sets and Systems, 436,152–174. DOI:10.1016/j.fss.2021.10.003
Zhang, Z., Wang, X., & Lu, J. (2018). Multi-objective immune genetic algorithm solving nonlinear interval-valued programming. Engineering Applications of Artificial Intelligence, 67, 235–245. https://doi.org/10.1016/j.engappai.2017.10.004