Khảo sát khả năng hấp phụ ion Cu (II) bằng hydrogel trên cơ sở Poly(vinyl alcohol)/ chitosan/carbon
Abstract
Với những tính chất vượt trội, hydrogel đã thu hút sự quan tâm của các nhà nghiên cứu trong và ngoài nước bởi khả năng dễ chế tạo và đa dạng các ứng dụng trong nhiều lĩnh vực. Trong nghiên cứu này, hydrogel được tổng hợp trên cơ sở polyvinyl alcohol (PVA), chitosan (CS) và carbon hoạt tính (AC) theo định hướng ứng dụng loại bỏ ion đồng trong nước thải. Các tính chất đặc trưng của hydrogel được khảo sát qua các phương pháp phân tích và đánh giá vật liệu, bao gồm quang phổ hồng ngoại, nhiễu xạ tia X, khả năng trương nước và hấp phụ ion Cu (II). Khả năng trương nước của hydrogel đạt được tối đa là 497.1% khi hàm lượng carbon hoạt tính trong mẫu hydrogel là 2% khối lượng carbon. Các mô hình đẳng nhiệt Langmuir và Freundlich được đưa vào nghiên cứu để đánh giá khả năng hấp phụ ion Cu (II) của hydrogel và các thông số thực nghiệm của quá trình khảo sát hoàn toàn khớp với mô hình. Hydrogel PVA/chitosan/carbon hoạt tính đạt được độ hấp phụ ion Cu (II) tối đa là 212.766 mg/g ở môi trường trung tính.
Tóm tắt
Abstract – Hydrogels have attracted the attention of domestic and foreign researchers due to their outstanding properties such as simple fabrication and diverse applications in many fields. In this study, hydrogels were synthesized from polyvinyl alcohol (PVA), chitosan (CS), and activated carbon (AC) towards removing copper ions from wastewater. The characteristic properties of hydrogels were investigated by analytical methods, including infrared spectroscopy (FTIR), X-ray diffraction (XRD), water swelling behavior, and Cu (II) ion adsorption capacity. The maximum water swelling capacity of the hydrogel was 497.1% when the active carbon content in the hydrogel sample was 2 wt%. The Langmuir and Freundlich isotherm models were used in the study to evaluate the Cu (II) ion adsorption capacity of the hydrogel and the experimental parameters of the survey process completely matched the model. The PVA/chitosan/active carbon hydrogel achieved a maximum Cu (II) ion adsorption of 212.766 mg/g in neutral medium.
Article Details
Tài liệu tham khảo
Abdeen, Z., Mohammad, S.G., & Mahmoud, M.S. (2015). Adsorption of Mn (II) ion on polyvinyl alcohol/chitosan dry blending from aqueous solution. Environmental Nanotechnology, Monitoring & Management, 3, 1-9.
Adebayo, G. B., Adebayo, H. I., & Fauzeeyat, S. (2020). Adsorption of Cr(VI) ions onto goethite, activated carbon and their composite: kinetic and thermodynamic studies, Applied Water Science, 10, 213.
Al-Othman, Z.A., Ali, R., & Naushad, M. (2012). Hexavalent chromium removal from
aqueous medium by activated carbon prepared from peanut shell: adsorption kinetics,
equilibrium and thermodynamic studies, Chemical Engineering Journal, 184, 238-247.
Amin, N. K. (2009). Removal of Direct Blue-106 Dye from Aqueous Solution Using New Activated Carbons Developed from Pomegranate Peel: Adsorption Equilibrium and Kinetics. Journal of Hazardous Materials, 165(1), 52-62.
ASTM International. (2018). Standard Test Method for Water Absorption of Plastics (ASTM D570-98). DOI: 10.1520/D0570-98R18.
Bayat, M., Javanbakht V., & Esmaili J. (2018). Synthesis of zeolite/nickel ferrite/sodium
alginate bionanocomposite via a co-precipitation technique for efficient removal of
water-soluble methylene blue dye, International journal of biological macromolecules
116, 607-619.
Bui, T. T. N., Doan, T. K. B., La T. H., Nguyen, N. T., Hoang, X. T., & Nguyen, T. M. A. (2018). Modification of Ketjenblack EC-600JD carbon as filler in cathode material for lithium-ion battery. Vietnam Journal Chemistry, 56(6E2), 262-266.
Cavaco S. A., Fernandes, S., Quina, M. M., & Ferreira, M. L. (2007). Removal of chromium from electroplating industry effluents by ion exchange resins, Journal of Hazardous Materials, 144, 634–638.
Chedly, J., Soares, S., Montembault, A., Boxberg, V.Y., Ravaille, V. M. Veron, Mouffle, C., Benassy, M. N., Taxi, J., David, L., & Nothiaset, F. (2017). Physical chitosan micro hydrogels as scaffolds for spinal cord injury restoration and axon regeneration. Biomaterials, 138, 91-107.
Choo, K. W., Ching, Y. C., Chuah, C. H., Sabariah, J., & Liou, N. S. (2016). Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber. Materials, 9, 644.
Demiral, H., & Güngör, C. (2016). Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse, Journal of Cleaner Production, 124, 103 – 113.
Gorzin, F., & Bahri, R. M. (2018). Adsorption of Cr(VI) from aqueous solution by adsorbent prepared from paper mill sludge: Kinetics and thermodynamics studies, Adsorption Science & Technology, 36(1-2), 149-169.
Gorzin, F., & Ghoreyshi, A. A. (2013). Synthesis of a new low-cost activated carbon from activated sludge for the removal of Cr (VI) from aqueous solution: Equilibrium, kinetics, thermodynamics and desorption studies, Korean Journal of Chemical Engineering, 30(8), 1594 – 1602.
Huang, M., Wang, C. & Liu, S. (2019). Adsorption of Cu and Ni Ions from Aqueous Solutions by Commercial Activated Carbon and the Reutilization in Glass Coloration. Journal of Wuhan University of Technology-Mater. Sci. Ed, 34, 41–46.
Kenawy, E. R., Elbadawy, A. K., Mohamed, S. M. E., & Mahmoud, A. E. M. (2014). Physically crosslinked poly(vinyl alcohol)- hydroxyethyl starch blend hydrogel membranes: Synthesis and characterization for biomedical applications. Arabian Journal of Chemistry, 7, 372 – 380.
Krishnaveni, B. & Ragunathan, R. (2015). Extraction and Characterization of Chitin and Chitosan from F.solani CBNR BKRR, Synthesis of their Bionanocomposites and Study of their Productive Application, Journal of Pharmaceutical Sciences and Research, 7(4), 197-205.
Lakshmipathiraj, P., Raju, B. G., Basariya, R. M., Parvathy, S., & Prabhakar, S. (2008). Removal of Cr (VI) by electrochemical reduction, Separation and Purification Technology, 60(1), 96-102.
Li, L., Wang, Z., Ma, P., Bai, H., Dong, W., & Chen, M. (2015). Preparation of polyvinyl alcohol/chitosan hydrogel compounded with graphene oxide to enhance the adsorption properties for Cu (II) in aqueous solution. Journal of Polymer Research, 22, 150-160.
Liu, K., Zhu, B., Feng, Q., Wang, Q., Duan, T., Ou, L., Zhang, G., Lu, Y. (2013). Adsorption of Cu(II) ions from aqueous solutions on modified chrysotile: Thermodynamic and kinetic studies. Applied Clay Science, 80-81, 38–45.
Muñoz-Senmache, C. J., Kim, S., Arrieta-Perez, R. R., Park, M. C., Yeomin Yoon, Y., & Hernandez-Maldonado, J. A. (2020). Activated Carbon–Metal Organic Framework Composite for the Adsorption of Contaminants of Emerging Concern from Water, ACS Applied Nano Materials, 3(3), 2928-2940.
Muslim, A., Ellysa, & Said, D. S. (2017). Cu(II) Ion Adsorption Using Activated Carbon Prepared from Pithecellobium Jiringa (Jengkol) Shells with Ultrasonic Assistance: Isotherm, Kinetic and Thermodynamic Studies, Journal of Engineering Technology, 49(4), 472-490.
Nowruzi, R., Heydari, M., & Javanbakht, V. (2020). Synthesis of a chitosan/polyvinyl alcohol/activate carbon biocomposite for removal of hexavalent chromium from aqueous solution, International Journal of Biological Macromolecules, 147, 209-216.
Peng, Q. L., Zhou, Y., Lu, W., Zhu, W., Li, Y., Chen, K., Zhang, G., Xu, J., & Deng, Z. (2019). Characterization of a novel polyvinyl alcohol/chitosan porous hydrogel combined with bone marrow mesenchymal stem cells and its application in articular cartilage repair. BMC Muscoloskelet Disord, 2019, 20(1), 257-265.
Punzi, M., Nilsson, F., Anbalagan, A., Svensson, B., Jonsson, K., Mattiasson, B., Jonstrup, M. (2015). Combined anaerobic-ozonation process for treatment of textile wastewater: removal of acute toxicity and mutagenicity. Journal of Hazardous Materials, 292, 52–60.
Song, Q., Gao, J., Lin, Y., Zhang, Z., & Xiang, Y. (2020). Synthesis of cross-linking chitosan-PVA composite hydrogel and adsorption of Cu (II) ions. Water Science & Technology, 81, 1063–1070.
Vineeth, S. K., Gadhave, R. V., & Gadekar, P. T. (2020). Glyoxal Cross-Linked Polyvinyl Alcohol Microcrystalline Cellulose Blend as a Wood Adhesive with Enhanced Mechanical, Thermal and Performance Properties, Materials International, 2(3), 0277-0285.
Yan, E., Cao, M., Jiang, J., Gao, J., Jiang, C., Ba, X., Yang, X., & Zhang, D. (2019). A novel adsorbent based on magnetic Fe3O4 contained polyvinyl alcohol/chitosan composite nanofibers for chromium (Ⅵ) removal. Solid State Sciences, 72, 94-102.
Yang, Q., Dou, F., Liang, B., & Shen, Q. (2005). Studies of cross-linking reaction on chitosan fiber with glyoxal. Carbohydrate Polymers, 59, 205–210.
Zhang, Y., Zhu, C. P., & Edgren, D. (2009). Crosslinking Reaction Of Poly(Vinyl Alcohol) With Glyoxal. Journal of Polymer Research. Journal of polymer research, 17, 725–730.
Zhou, J., Wang, Y., Wang, J., Qiao, W., Long, D., & Ling, L. (2016). Effective removal of
hexavalent chromium from aqueous solutions by adsorption on mesoporous carbon
microspheres, Journal of colloid and interface science, 462, 200-207.