Hồ Thị Kim Thoa * Võ Văn Đấu

* Tác giả liên hệ (htkthoa@ctu.edu.vn)

Abstract

The discrete element method (DEM) is increasingly superior to the finite element method (FEM) in current geotechnical research. This paper presents an overview of the achievements of the DEM method in recent years. The results show that DEM is very suitable for simulating the properties of materials, especially granular materials. Currently, this method is being studied on adhesive materials, which makes it difficult to simulate particle shape and interaction between particles. However, some recent studies show future potential for the application of the DEM method on adhesive materials.

Keywords: Discrete element method, Geomaterials, PFC software, Triaxial tests, Uniaxial tests

Tóm tắt

Phương pháp phần tử rời rạc (DEM) ngày càng thể hiện tính vượt trội so với phương pháp phần tử hữu hạn (FEM) trong các nghiên cứu về địa kỹ thuật hiện nay. Bài báo giới thiệu một cách tổng quan về những thành tựu mà phương pháp DEM đã đạt được trong những năm gần đây. Các kết quả cho thấy việc ứng dụng DEM vào việc mô phỏng các đặc tính của vật liệu khá linh hoạt: từ các vật liệu rời rạc truyền thống, phương pháp này đặt nhiều tiềm năng trong nghiên cứu các vật liệu kết dính

Từ khóa: Phần mềm PFC, Phần tử rời rạc, thí nghiệm ba trục, , thí nghiệm đơn trục, vật liệu địa kỹ thuật

Article Details

Tài liệu tham khảo

Belheinea, N., Plassiard, J.P., Donzé, F. V., Darve, F., & Seridid, A. (2009). Numerical simulation of drained triaxial test using 3D discrete element modeling. Computers and Geotechnics, 36(2009), 320-331. https://doi.org/10.1016/j.compgeo.2008.02.003

Bolton, M. B. (1986) The strength and dilatancy of sands. Géotechnique, 36, 65–78.

Brown, N. J., Chen, J. F., & Ooi, J. Y. (2014). A bond model for DEM simulation of cementitious materials and deformable structures. Granular Matter 16, 299–311 (2014). https://doi.org/10.1007/s10035-014-0494-4

Cil, M. B., & Alshibli, K. A. (2014). 3D analysis of kinematic behavior of granular materials in triaxial testing using DEM with flexible membrane boundary. Acta Geotech, 9, 287–298. https://doi.org/10.1007/s11440-013-0273-0

Coré, A., Kopp, J. P., Viot, P., Charles, J. L., & Dau, F. (2017). Experimental Investigation and Discrete Element Modelling of Composite Hollow Spheres Subjected to Dynamic Fracture, International Journal of Polymer Science, 2017, 7638482. https://doi.org/10.1155/2017/7638482

Cundall, P. A. (1971). A Computer Model for Simulating Progressive Large Scale Movements in Blocky Rock Systems, In International Society for Rock Mechanics (Eds.), Proceedings of the Symposium of the International Society of Rock Mechanics (pp. 2-8). Rubrecht.

Cundall, P. A., & Strack, O. D. L. (1979). A Discrete Numerical Model for Granular Assemblies. Géotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47

de Bono, J.P & McDowell, G.R. (2014). DEM of triaxial tests on crushable sand. Granular Matter, 16, 551–562.

https://doi.org/10.1007/s10035-014-0500-x

de Bono, J. P., & McDowell, G. R. (2022). Discrete element modelling of normal compression of clay. Journal of the Mechanics and Physics of Solids, 162, 104847. https://doi.org/10.1016/j.jmps.2022.104847

Dong, Y., Fatahi, B., Khabbaz, H., & Zhang, H. (2018). Influence of particle contact models on soil response of poorly graded sand during cavity expansion in discrete element simulation. Journal of Rock Mechanics and Geotechnical Engineering 10 (2018), 1154-1170 . https://doi.org/10.1016/j.jrmge.2018.03.009

Donzé, F.V., Richefeu, V., & Magnier, S.A. (2009). Advances in Discrete Element Method Applied to Soil, Rock and Concrete Mechanics. Electronic Journal of Geotechnical Engineering, 8, 1-44. https://www.researchgate.net/publication/228670 932

Fergani, S., Allag Ait Mokhtar, K., Djerbal, L., Pizette, P., Abriak, N.E., & Nechnech, A. (2020). FEM Simulations of Granular Matter Behaviour Under Triaxial Tests. Geotechnical and Geological Engineering, 39, 991–1008. https://doi.org/10.1007/s10706-020-01540-x

Golmaei, S.H., & Boulon, M. (2012). Comparison between experimental and finite element modeling data for triaxial undrained cyclic tests in compression on hostum sand. Int J Civ Struct Eng 3(2), 429–442.

Hazzara, L., Nuth, M., & Chekired, M. (2020). DEM simulation of drained triaxial tests for glass- beads. Powder Technology, 364(2020), 123-134. https://doi.org/10.1016/j.powtec.2019.09.095

Heo, J.H, Sam S. H, & Noune, M. (2022). Study of Micro-Parameters of DEM Model on the Laboratory Experiment Results Obtained from Poorly Cemented Sandstone Geosciences 12(10): 373. https://doi.org/10.3390/geosciences12100373

Ho, T.K.T., & Weng, M.C. (2021). Effect of Microscopic Properties on the Mechanical Behavior of Gravelly Soil by Using DEM. In: Khabbaz, H., Xiao, Y., & Chang, J.R. (Eds). Sustainable Civil Infrastructures. Springer. https://doi.org/10.1007/978-3-030-79650-1_1

Ho, T.K.T., & Weng, M.C. (2021). Evaluating Influence of Microscopic Properties on Mechanical Behavior of Gravelly Soils by Using Discrete-Element Method. International Journal of Geomechanics, 22(12), 04021228 https://doi.org/10.1061/(ASCE)GM.1943- 5622.0002178

Huang, D., Wang, J., & Liu, S. (2015). A comprehensive study on the smooth joint model in DEM simulation of jointed rock masses. Granular Matter, 17(6), 775–791. https://doi.org/10.1007/s10035-015-0594-9

Itasca Consulting Group Inc. (2016). Itasca: Particle Flow Code 6.0 Manual. Minneapolis.

Jiang, M., Jiang, T., Crosta, G. B., Shi, Zh., Chen, H., & Zhang, N., (2015). Modeling failure of jointed rock slope with two main joint sets using a novel DEM bond contact model. Engineering Geology, 193(), 79–96. https://doi.org/10.1016/j.enggeo.2015.04.013

Jiang, M., Zhang, A., & Shen, Z. (2020). Granular soils: from DEM simulation to constitutive modeling. Acta Geotechnica, 15(7), 1723–1744. doi:10.1007/s11440-020-00951-7

Lambert, C., & Coll, C. (2014). Discrete modeling of rock joints with a smooth-joint contact model. Journal of Rock Mechanics and Geotechnical Engineering, 6(1), 1–12. https://doi.org/10.1016/j.jrmge.2013.12.003

Labra, C. A., Oñate, N., & Rojek, J. (2012). Advances in the Development of the Discrete Element Method for Excavation Processes. Monograph CIMNE.

Le, H.K., Huang, W.C., Weng, M.C., & Huang, W.J. (2022). Exploring Effect of Microproperties on Shear Strength of Rock Joints through Physical and Numerical Modeling. International Journal of Geomechanics, 22(8), 04022112. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002432

Li, Y., Wu, W., Chu, X., & Zou, W. (2020). Effects of stress paths on triaxial compression mechanical properties of QH-E lunar soil simulant studied by DEM simulation. Granular Matter, 22, 32(2020). https://doi.org/10.1007/s10035- 020-0999-y

Li1, Z., & Tang, Y. (2020). Mesoscopic Simulation Method for Uniaxial Compression Test of RCC Dam Material Based on DEM. Mathematical Problems in Engineering, 2020, 6686609. https://doi.org/10.1155/2020/6686609

Mehranpour, M.H., & Kulatilake, P.H. (2017). Improvements for the smooth joint contact model of the particle flow code and its applications. Computers and Geotechnics, 87, 163-177. https://doi.org/10.1016/J.COMPGEO.2017.02.012

Miao, C.X., Zheng, J.J., Zhang, R.J., & Cui, L (2017). DEM modeling of pullout behavior of geogrid reinforced ballast: The effect of particle shape. Computers and Geotechnics, 81(2017), 249–261. https://doi.org/10.1016/j.compgeo.2016.08.028

Nandanwar, M. & Chen, Y. (2017). Modeling and measurements of triaxial tests for a sandy loam soil. Canadian Biosystems Engineering, 59, 2.1-2.8.

Ngo, N. T., Indraratna, B., & Rujikiatkamjorn, C. (2017). Micromechanics-Based Investigation of Fouled Ballast Using Large-Scale Triaxial Tests and Discrete Element Modeling. Journal of Geotechnical and Geoenvironmental Engineering, 143(2), 04016089. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001587

Ngo, T., & Indraratna, B. (2020). Analysis of Deformation and Degradation of Fouled Ballast: Experimental Testing and DEM Modeling. International Journal of Geomechanics, 20(9), 06020020. https://doi.org/10.1061/(ASCE)GM.1943- 5622.0001783

Nitka, M., & Tejchman, J. (2015). Modelling of concrete behaviour in uniaxial compression and tension with DEM. Granular Matter, 17, 145– 164. https://doi.org/10.1007/s10035-015-0546-4

Nosewicz, S., Rojek, J., & Chmielewski, M. (2017). Application of the Hertz formulation in the discrete element model of pressure-assisted sintering. Granular Matter 19, 16 (2017). https://doi.org/10.1007/s10035-016-0699-9

Potyondy, D.O., & Cundall, P.A. (2004). A bonded- particle model for rock. International Journal of Rock Mechanics & Mining Sciences, 41 (2004), 1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011

Shen, Z., Jiang, M., & Thornton, C. (2016). DEM simulation of bonded granular material. Part I: Contact model and application to cemented sand. Computers and Geotechnics, 75, 192-209. https://doi.org/10.1016/j.compgeo.2016.02.007

Shen, Z., Jiang, M. & Wang, S. (2019). Static and kinematic damage characterization in structured sand. Acta Geotech. 14, 1403–1421 (2019). https://doi.org/10.1007/s11440-018-0730-x

Suchorzewski, J., Tejchman, J., & Nitka, M. (2017). Discrete element method simulations of fracture in concrete under uniaxial compression based on its real internal structure. International Journal of Damage Mechanics, 27(4), 1-30. https://doi.org/10.1177%2F1056789517690915

Teufelsbauer, H., Wang, Y., & Chiou, M.C (2009). Flow–obstacle interaction in rapid granular avalanches: DEM simulation and comparison with experiment. Granular Matter 11, 209–220 (2009). https://doi.org/10.1007/s10035-009-0142-6

Tolomeo, M., & McDowell, G. R. (2022). Implementation of real contact behaviour in the DEM modelling of triaxial tests on railway ballast. Powder Technology, 412, Article 118021. https://doi.org/10.1016/j.powtec.2022.118021

Wu, M., Wu, F., & Wang, J. Particle shape effect on the shear banding in DEM-simulated sands. Granular Matter 24, 48 (2022). https://doi.org/10.1007/s10035-022-01210-0

Wu, K., Sun, W., Liu, S., & Zhang, X. (2021). Study of shear behavior of granular materials by 3D DEM simulation of the triaxial test in the membrane boundary condition. Advanced Powder Technology, 32(4), 1145–1156. https://doi.org/10.1016/j.apt.2021.02.018

Yan, G., Yu, H., & McDowell, G. (2009). Simulation of granular material behaviour using DEM. Procedia Earth and Planetary Science, 1(1), 598–605. https://doi.org/10.1016/j.proeps.2009.09.095

Zhang, J.Q., Wang, X., Yin, Zh.Y., & Liang, Zh, Y. (2020). DEM modeling of large-scale triaxial test of rock clasts considering realistic particle shapes and flexible membrane boundary. Engineering Geology, 279(2020), 105871. https://doi.org/10.1016/j.enggeo.2020.105871