Trần Quang Đệ * , Nguyễn Cường Quốc , Nguyễn Trọng Tuân Trần Thanh Mến

* Tác giả liên hệ (tqde@ctu.edu.vn)

Abstract

The concentration of greenhouse gases in the atmosphere has been increasing since the beginning of the industrial revolution. Nitrous oxide (N2O) is one of the mightiest greenhouse gases, and agriculture is one of the main sources of N2O emissions. In this report, we discussed the mechanisms triggering N2O emissions and the role of agricultural practices in their mitigation. The amount of N2O produced from the soil through the combined processes of nitrification and denitrification is profoundly influenced by temperature, moisture, carbon, nitrogen and oxygen contents. These factors can be manipulated to a significant extent through field management practices, influencing N2O emission. The relationships between N2O occurrence and factors regulating it are an important premise for devising mitigation strategies. Acting on N supply (fertilizer type, dose, time, method, etc.) is the most straightforward way to achieve significant N2O reductions without compromising crop yields. Besides, crop management (tillage, irrigation, rotation, etc.) to principles of good agricultural practices is also advisable, as it can fetch significant N2O abatement.

Keywords: Agricultural activities, emision, green house gas, N2O production, sustainable development

Tóm tắt

Nồng độ khí nhà kính trong khí quyển ngày càng tăng kể từ khi bắt đầu cuộc cách mạng công nghiệp. Nitrous oxide (N2O) là một trong những khí nhà kính mạnh nhất, và nông nghiệp là một trong những nguồn phát thải N2O chính. Trong bài viết này, một số cơ chế gây ra phát thải N2O và vai trò của các hoạt động nông nghiệp trong việc giảm thiểu chúng được thảo luận. Lượng N2O được tạo ra từ đất thông qua các quá trình kết hợp của sự nitrat hóa và khử nitrat hóa do nhiều yếu tố tác động như nhiệt độ, độ ẩm, hàm lượng carbon, nitrogen và oxy. Các yếu tố này có thể được điều chỉnh ở một mức độ nào đó thông qua các hoạt động quản lý thực hành và sẽ ảnh hưởng đến phát thải N2O. Mối quan hệ giữa sự sản sinh N2O và các yếu tố điều chỉnh là tiền đề quan trọng để đề ra các chiến lược giảm thiểu. Dựa vào nguồn cung cấp phân đạm N (loại phân bón, liều lượng, thời gian, phương pháp,...)

Từ khóa: Hoạt động nông nghiệp, khí nhà kính, phát thải, phát triển bền vững, sản sinh N2O

Article Details

Tài liệu tham khảo

Aamer, M., Hassan, M. U., Shaaban, M., Rasul, F., Haiying, T., Qiaoying, M., Batool, M., Rasheed, A., Chuan, Z., Qitao, S., & Guoqin, H. (2021). Rice straw biochar mitigates N2O emissions under alternate wetting and drying conditions in paddy soil. Journal of Saudi Chemical Society, 25(1), 101172. https://doi.org/10.1016/j.jscs.2020.11.005

Anenberg, S. C., Schwartz, J., Shindell, D., Amann, M., Faluvegi, G., Klimont, Z., Janssens, -Maenhout Greet, Pozzoli, L., Van, D. R., Vignati, E., Emberson, L., Muller, N. Z., West, J. J., Williams, M., Demkine, V., Hicks, W. K., Kuylenstierna, J., Raes, F., & Ramanathan, V. (2012). Global Air Quality and Health Co-benefits of Mitigating Near-Term Climate Change through Methane and Black Carbon Emission Controls. Environmental Health Perspectives, 120(6), 831–839. https://doi.org/10.1289/ehp.1104301

Avnery, S., Mauzerall, D. L., Liu, J., & Horowitz, L. W. (2011). Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmospheric Environment, 45(13), 2284–2296. https://doi.org/10.1016/j.atmosenv.2010.11.045

Baggs, E. M. (2011). Soil microbial sources of nitrous oxide: Recent advances in knowledge, emerging challenges and future direction. Current Opinion in Environmental Sustainability, 3(5), 321–327. https://doi.org/10.1016/j.cosust.2011.08.011

Baggs, E. M., Smales, C. L., & Bateman, E. J. (2010). Changing pH shifts the microbial sourceas well as the magnitude of N2O emission from soil. Biology and Fertility of Soils, 46(8), 793–805. https://doi.org/10.1007/s00374-010-0484-6

Braker, G., & Conrad, R. (2011). Chapter 2—Diversity, Structure, and Size of N2O-Producing Microbial Communities in Soils—What Matters for Their Functioning? In A. I. Laskin, S. Sariaslani, & G. M. Gadd (Eds.), Advances in Applied Microbiology (Vol. 75, pp. 33–70). Academic Press. https://doi.org/10.1016/B978-0-12-387046-9.00002-5

Conrad, R. (2001). Evaluation of data on the turnover of NO and N2O by oxidative versus reductive microbial processes in different soils. Phyton Horn, 41, 61-72.

Čuhel, J., Šimek, M., Laughlin, R. J., Bru, D., Chèneby, D., Watson, C. J., & Philippot, L. (2010). Insights into the Effect of Soil pH on N2O and N2 Emissions and Denitrifier Community Size and Activity. Applied and Environmental Microbiology, 76(6), 1870–1878. https://doi.org/10.1128/AEM.02484-09

Davidson, E. A. (2009). The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nature Geoscience, 2(9), 659–662. https://doi.org/10.1038/ngeo608

Davidson, E. A., & Swank, W. T. (1986). Environmental parameters regulating gaseous nitrogen losses from two forested ecosystems via nitrification and denitrification. Applied and Environmental Microbiology, 52(6), 1287-1292.

Ding, Y., Liu, Y.-X., Wu, W.-X., Shi, D.-Z., Yang, M., & Zhong, Z.-K. (2010). Evaluation of Biochar Effects on Nitrogen Retention and Leaching in Multi-Layered Soil Columns. Water, Air, & Soil Pollution, 213(1), 47–55. https://doi.org/10.1007/s11270-010-0366-4

Ding, Z., Ali, E. F., Elmahdy, A. M., Ragab, K. E., Seleiman, M. F., & Kheir, A. M. S. (2021). Modeling the combined impacts of deficit irrigation, rising temperature and compost application on wheat yield and water productivity. Agricultural Water Management, 244, 106626. https://doi.org/10.1016/j.agwat.2020.106626

Firestone, M. K., Davidson, E. A., & Andreae, M. O. (1989). Microbiological basis of NO and N2O production and consumption in soil. Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere, 7-21.

Food and Agriculture Organization of the United Nations. (2009). The state of food and agriculture 2009. https://www.fao.org/publications/card/en/c/3aa4f41c-4316-5ddd-a656-22a00ef5d414/.

Feng, J.; Li, F.; Zhou, X.; Xu, C.; Ji, L.; Chen, Z.; Fang, F. (2018). Impact of agronomy practices on the effects of reduced tillage systems onCH4and N2O emissions from agricultural fields: A global meta-analysis. PLoS ONE, 13, e0196703

Fernandes, S. O., Bonin, P. C., Michotey, V. D., Garcia, N., & LokaBharathi, P. A. (2012). Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium. Scientific Reports, 2(1), 419. https://doi.org/10.1038/srep00419

Groffman, P. M., Altabet, M. A., Böhlke, J. K., Butterbach-Bahl, K., David, M. B., Firestone, M. K., Giblin, A. E., Kana, T. M., Nielsen, L. P., & Voytek, M. A. (2006). Methods for Measuring Denitrification: Diverse Approaches to a Difficult Problem. Ecological Applications, 16(6), 2091–2122. https://doi.org/10.1890/1051-0761(2006)016[2091:MFMDDA]2.0.CO;2

Haider, A., Bashir, A., & Husnain, M. I. ul. (2020). Impact of agricultural land use and economic growth on nitrous oxide emissions: Evidence from developed and developing countries. Science of The Total Environment, 741, 140421. https://doi.org/10.1016/j.scitotenv.2020.140421

Hassan, M. U., Chattha, M. U., Khan, I., Chattha, M. B., Barbanti, L., Aamer, M., Iqbal, M. M., Nawaz, M., Mahmood, A., Ali, A., & Aslam, M. T. (2021). Heat stress in cultivated plants: Nature, impact, mechanisms, and mitigation strategies—a review. Plant Biosystems - An International Journal Dealing with All Aspects of Plant Biology, 155(2), 211–234. https://doi.org/10.1080/11263504.2020.1727987

Hefting, M. M., Bobbink, R., & de Caluwe, H. (2003). Nitrous Oxide Emission and Denitrification in Chronically Nitrate-Loaded Riparian Buffer Zones. Journal of Environmental Quality, 32(4), 1194–1203. https://doi.org/10.2134/jeq2003.1194

Institute for Agriculture and Trade Policy. (2021). New research shows 50 year binge on chemical fertilisers must end to address the climate crisis. https://www.iatp.org/new-research-chemical-fertilisers.

IPCC. (2014). Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

IPPC. (2021). IPCC Sixth Assessment Report. https://www.ipcc.ch/report/ar6/wg3/.

Japan International Cooperation Agency (JICA). (2017). Hội thảo khởi động Tham vấn Đánh giá nhu cầu Công nghệ Các bon thấp - Hỗ trợ thực hiện INDC của Việt Nam. https://www.jica.go.jp/project/vietnamese/vietnam/036/activities/activities_01_10.html.

Kammann, C., Ippolito, J., Hagemann, N., Borchard, N., Cayuela, M. L., Estavillo, J. M., Fuertes-Mendizabal, T., Jeffery, S., Kern, J., Novak, J., Rasse, D., Saarnio, S., Schmidt, H.-P., Spokas, K., & Wrage-Mönnig, N. (2017). Biochar as a tool to reduce the agricultural greenhouse-gas burden – knowns, unknowns and future research needs. Journal of Environmental Engineering and Landscape Management, 25(2), 114–139. https://doi.org/10.3846/16486897.2017.1319375

Khan, S., Clough, T., Goh, K., & Sherlock, R. (2011). Influence of soil pH on NO x and N2O emissions from bovine urine applied to soil columns. New Zealand Journal of Agricultural Research, 54(4), 285–301. https://doi.org/10.1080/00288233.2011.607831

Lâm, H. X. (2020). Thực trạng tăng trưởng xanh trong nông nghiệp của Việt Nam. Tạp chí Tài chính Kỳ 2 - Tháng 6/2020. https://tapchitaichinh.vn/su-kien-noi-bat/thuc-trang-tang-truong-xanh-trong-nong-nghiep-cua-viet-nam-329774.html

Liang, W.; Shi, Y.; Zhang, H.; Yue, J.; Huang, G.H. (2007). Greenhouse gas emissions from northeast China rice fields in fallow season.Pedosphere. 17, 630–638

Liu, J., Xu, H., Jiang, Y., Zhang, K., Hu, Y., & Zeng, Z. (2017). Methane Emissions and Microbial Communities as Influenced by Dual Cropping of Azolla along with Early Rice. Scientific Reports, 7(1), 40635. https://doi.org/10.1038/srep40635

Malyan, S. K., Bhatia, A., Fagodiya, R. K., Kumar, S. S., Kumar, A., Gupta, D. K., Tomer, R., Harit, R. C., Kumar, V., Jain, N., & Pathak, H. (2021). Plummeting global warming potential by chemicals interventions in irrigated rice: A lab to field assessment. Agriculture, Ecosystems & Environment, 319, 107545. https://doi.org/10.1016/j.agee.2021.107545

Malyan, S. K., Bhatia, A., Tomer, R., Harit, R. C., Jain, N., Bhowmik, A., & Kaushik, R. (2021). Mitigation of yield-scaled greenhouse gas emissions from irrigated rice through Azolla, Blue-green algae, and plant growth–promoting bacteria. Environmental Science and Pollution Research, 28(37), 51425–51439. https://doi.org/10.1007/s11356-021-14210-z

Mei, K.; Wang, Z.; Huang, H.; Zhang, C.; Shang, X.; Dahlgren, R.A.; Zhang, M.; Xia, F. (2018). Stimulation of N2O emission byconservation tillage management in agricultural lands: A meta-analysis. Soil Tillage Res. 182, 86–93.

Moreira, F.M.S.; Siqueira, J.O. (2006). Microbiology and Soil Bio-Chemistry (2nd ed.). Academic Press: Cambridge, MA, USA.

Nguyen, T. H. (2017). Tổng quan về ô nhiễm nông nghiệp ở Việt Nam: Ngành trồng trọt. World Bank: Washington, DC, USA.

Pilegaard, K. (2013). Processes regulating nitric oxide emissions from soils. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1621), 20130126. https://doi.org/10.1098/rstb.2013.0126

Rasheed, A., Hassan, M. U., Aamer, M., Batool, M., Fang, S., Wu, Z., & Li, H. (2020). A critical review on the improvement of drought stress tolerance in rice (Oryza sativa L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4), 1756–1788. https://doi.org/10.15835/nbha48412128

Rochette, P., Worth, D. E., Huffman, E. C., Brierley, J. A., McConkey, B. G., Yang, J., Hutchinson, J. J., Desjardins, R. L., Lemke, R., & Gameda, S. (2008). Estimation of N2O emissions from agricultural soils in Canada. II. 1990–2005 inventory. Canadian Journal of Soil Science, 88(5), 655–669. https://doi.org/10.4141/CJSS07026

Taha, S., Seleiman, M. F., Alotaibi, M., Alhammad, B. A., Rady, M. M., & H. A. Mahdi, A. (2020). Exogenous Potassium Treatments Elevate Salt Tolerance and Performances of Glycine max L. by Boosting Antioxidant Defense System under Actual Saline Field Conditions. Agronomy, 10(11), 1741. https://doi.org/10.3390/agronomy10111741

Sekoai, P. T., & Yoro, K. O. (2016). Biofuel Development Initiatives in Sub-Saharan Africa: Opportunities and Challenges. Climate, 4(2), 33. https://doi.org/10.3390/cli4020033

Seleiman, M. F., & Abdelaal, M. S. (2018). Effect of Organic, Inorganic and Bio-fertilization on Growth, Yield and Quality Traits of Some Chickpea ( Cicer arietinum L.) Varieties. Egyptian Journal of Agronomy, 40(1), 105–117. https://doi.org/10.21608/agro.2018.2869.1093

Seleiman, M. F., & Abdel-Aal, M. S. M. (2018). Response of Growth, Productivity and Quality of Some Egyptian Wheat Cultivars to Different Irrigation Regimes. Egyptian Journal of Agronomy, 40(3), 313–330. https://doi.org/10.21608/agro.2018.6352.1136

Seleiman, M. F., Alotaibi, M. A., Alhammad, B. A., Alharbi, B. M., Refay, Y., & Badawy, S. A. (2020). Effects of ZnO Nanoparticles and Biochar of Rice Straw and Cow Manure on Characteristics of Contaminated Soil and Sunflower Productivity, Oil Quality, and Heavy Metals Uptake. Agronomy, 10(6), 790. https://doi.org/10.3390/agronomy10060790

Seleiman, M. F., & Hardan, A. N. (2021). Importance of Mycorrhizae in Crop Productivity. In H. Awaad, M. Abu-hashim, & A. Negm (Eds.), Mitigating Environmental Stresses for Agricultural Sustainability in Egypt (pp. 471–484). Springer International Publishing. https://doi.org/10.1007/978-3-030-64323-2_17

Seleiman, M. F., & Kheir, A. M. S. (2018). Maize productivity, heavy metals uptake and their availability in contaminated clay and sandy alkaline soils as affected by inorganic and organic amendments. Chemosphere, 204, 514–522. https://doi.org/10.1016/j.chemosphere.2018.04.073

Seleiman, M. F., Kheir, A. M. S., Al-Dhumri, S., Alghamdi, A. G., Omar, E.-S. H., Aboelsoud, H. M., Abdella, K. A., & Abou El Hassan, W. H. (2019). Exploring Optimal Tillage Improved Soil Characteristics and Productivity of Wheat Irrigated with Different Water Qualities. Agronomy, 9(5), 233. https://doi.org/10.3390/agronomy9050233

Seleiman, M. F., Refay, Y., Al-Suhaibani, N., Al-Ashkar, I., El-Hendawy, S., & Hafez, E. M. (2019). Integrative Effects of Rice-Straw Biochar and Silicon on Oil and Seed Quality, Yield and Physiological Traits of Helianthus annuus L. Grown under Water Deficit Stress. Agronomy, 9(10), 637. https://doi.org/10.3390/agronomy9100637

Seleiman, M. F., Santanen, A., Jaakkola, S., Ekholm, P., Hartikainen, H., Stoddard, F. L., & Mäkelä, P. S. A. (2013). Biomass yield and quality of bioenergy crops grown with synthetic and organic fertilizers. Biomass and Bioenergy, 59, 477–485. https://doi.org/10.1016/j.biombioe.2013.07.021

Seleiman, M. F., Santanen, A., & Mäkelä, P. S. A. (2020). Recycling sludge on cropland as fertilizer – Advantages and risks. Resources, Conservation and Recycling, 155, 104647. https://doi.org/10.1016/j.resconrec.2019.104647

Seleiman, M. F., Santanen, A., Stoddard, F. L., & Mäkelä, P. (2012). Feedstock quality and growth of bioenergy crops fertilized with sewage sludge. Chemosphere, 89(10), 1211–1217. https://doi.org/10.1016/j.chemosphere.2012.07.031

Shelp, M. L., Beauchamp, E. G., & Thurtell, G. W. (2000). Nitrous oxide emissions from soil amended with glucose, alfalfa, or corn residues. Communications in Soil Science and Plant Analysis, 31(7–8), 877–892. https://doi.org/10.1080/00103620009370484

Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (2014). Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge, UK; New York, NY, USA. https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter08_FINAL.pdf

Sun, P., Zhuge, Y., Zhang, J., & Cai, Z. (2012). Soil pH was the main controlling factor of the denitrification rates and N2/N2O emission ratios in forest and grassland soils along the Northeast China Transect (NECT). Soil Science and Plant Nutrition, 58(4), 517–525. https://doi.org/10.1080/00380768.2012.703609

Syakila, A., & Kroeze, C. (2011). The global nitrous oxide budget revisited. Greenhouse Gas Measurement and Management, 1(1), 17–26. https://doi.org/10.3763/ghgmm.2010.0007

Szukics, U., Abell, G. C., Hödl, V., Mitter, B., Sessitsch, A., Hackl, E., & Zechmeister-Boltenstern, S. (2010). Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil. FEMS microbiology ecology, 72(3), 395-406.

Tate, K. R., Ross, D. J., Saggar, S., Hedley, C. B., Dando, J., Singh, B. K., & Lambie, S. M. (2007). Methane uptake in soils from Pinus radiata plantations, a reverting shrubland and adjacent pastures: Effects of land-use change, and soil texture, water and mineral nitrogen. Soil Biology and Biochemistry, 39(7), 1437–1449. https://doi.org/10.1016/j.soilbio.2007.01.005

Tellez-Rio, A., Vallejo, A., García-Marco, S., Martin-Lammerding, D., Tenorio, J. L., Rees, R. M., & Guardia, G. (2017). Conservation Agriculture practices reduce the global warming potential of rainfed low N input semi-arid agriculture. European Journal of Agronomy, 84, 95–104. https://doi.org/10.1016/j.eja.2016.12.013

Thomson, A. J., Giannopoulos, G., Pretty, J., Baggs, E. M., & Richardson, D. J. (2012). Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1593), 1157–1168. https://doi.org/10.1098/rstb.2011.0415

Tian, L., Zhu, B., & Akiyama, H. (2017). Seasonal variations in indirect N2O emissions from an agricultural headwater ditch. Biology and Fertility of Soils, 53(6), 651–662. https://doi.org/10.1007/s00374-017-1207-z

Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), 671–677. https://doi.org/10.1038/nature01014

Umair Hassan, M., Aamer, M., Umer Chattha, M., Haiying, T., Shahzad, B., Barbanti, L., Nawaz, M., Rasheed, A., Afzal, A., Liu, Y., & Guoqin, H. (2020). The Critical Role of Zinc in Plants Facing the Drought Stress. Agriculture, 10(9), 396. https://doi.org/10.3390/agriculture10090396

Venterea, R. T., Halvorson, A. D., Kitchen, N., Liebig, M. A., Cavigelli, M. A., Grosso, S. J. D., Motavalli, P. P., Nelson, K. A., Spokas, K. A., Singh, B. P., Stewart, C. E., Ranaivoson, A., Strock, J., & Collins, H. (2012). Challenges and opportunities for mitigating nitrous oxide emissions from fertilized cropping systems. Frontiers in Ecology and the Environment, 10(10), 562–570. https://doi.org/10.1890/120062

Xiao, X.P.; Wu, F.L.; Huang, F.Q.; Li, Y.; Sun, G.F.; Hu, Q.; He, Y.Y.; Chen, F.; Yang, G.L. Greenhouse air emission under differentpattern of rice straw returned to field in double rice area. Res. Agric. Mod. 2007,28, 629–632

Xu, Y., Xu, Z., Cai, Z., & Reverchon, F. (2013). Review of denitrification in tropical and subtropical soils of terrestrial ecosystems. Journal of Soils and Sediments, 13(4), 699–710. https://doi.org/10.1007/s11368-013-0650-1

Yoro, K. O., & Daramola, M. O. (2020). Chapter 1—CO2 emission sources, greenhouse gases, and the global warming effect. In M. R. Rahimpour, M. Farsi, & M. A. Makarem (Eds.), Advances in Carbon Capture (pp. 3–28). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-819657-1.00001-3

Zebarth, B. J., Snowdon, E., Burton, D. L., Goyer, C., & Dowbenko, R. (2012). Controlled release fertilizer product effects on potato crop response and nitrous oxide emissions under rain-fed production on a medium-textured soil. Canadian Journal of Soil Science, 92(5), 759–769. https://doi.org/10.4141/cjss2012-008

Zhu, X., Burger, M., Doane, T. A., & Horwath, W. R. (2013). Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. Proceedings of the National Academy of Sciences, 110(16), 6328–6333. https://doi.org/10.1073/pnas.1219993110