Phát triển dòng cá tra (Pangasianodon hypophthalmus) chịu mặn thích ứng với biến đổi khí hậu
Abstract
The development of saline-tolerant striped catfish adapting to climate change is of great importance for fish farming in the Mekong Delta. Over the last 5 years, we have succeeded in selecting a striped catfish strain with better tolerance to salinity (up to 10‰). Striped catfish can mature well in 5‰ with reproductive parameters similar to those cultured in freshwater conditions. In the following generation, survival rates of the selected and random groups were similar at salinities from 0‰ to 15‰ and insignificantly higher than the freshwater group (p>0.05). After one generation of selection under saline water conditions, realized heritability for body weight was moderate (0.29) and the average direct responses to selection for growth and survival were 18.0% and 11.4%, respectively. Physiological studies indicated that striped catfish can develop at 15‰ and that the salinity of 20‰ was considered the saline water tolerant limit of striped catfish. The gut of striped catfish was most responsive to changes in the osmotic pressure of water environment compared with other organs. 'Hormesis' method showed that exposure to the saline condition of 5‰ in the larval stage had the potential to alter gene expression related to osmotic regulation, immunity, and stress,...
Tóm tắt
Phát triển dòng cá tra chịu mặn để thích ứng với biến đổi khí hậu có ý nghĩa quan trọng đối với nghề nuôi cá tra ở Đồng bằng sông Cửu Long. Trong 5 năm qua, chúng tôi đã thành công trong chọn lọc được dòng cá tra chịu mặn đến 10‰. Cá thành thục tốt ở 5‰ với các chỉ tiêu sinh sản tương tương với cá nuôi trong nước ngọt. Tỷ lệ sống của nhóm cá chọn lọc và không chọn lọc tương đồng nhau ở độ mặn từ 0‰ tới 15‰ và cao hơn nhóm cá nước ngọt mặc dù khác biệt không có ý nghĩa (p>0,05). Sau một thế hệ chọn lọc trong nước lợ, hệ số di truyền về khối lượng là 0,29, tăng trưởng khối lượng tăng 18,0% và tỷ lệ sống tăng 11,4%. Nghiên cứu về sinh lý học cho thấy cá tra có khả năng sinh trưởng ở 15‰ và độ mặn 20‰ được xem là giới hạn chịu đựng của cá tra. Đường ruột của cá phản ứng mạnh nhất với sự thay đổi áp suất thẩm thấu của môi trường so với các cơ quan khác. Phương pháp “hormesis” ...
Article Details
Tài liệu tham khảo
Argue, B.J., Arce, S.M., Lotz, J.M., Moss, S.M. (2002). Selective breeding of Pacific white shrimp (Litopenaeus vannamei) for growth and resistance to Taura Syndrome Virus. Aquaculture, 204, 447–460. https://doi.org/10.1016/S0044-8486(01)00830-4
Bộ Nông nghiệp và Phát triển Nông thôn. (2021). Quyết định số 3550/QĐ-BNN-TCTS phê duyệt Đề án phát triển nuôi trồng thủy sản bền vững vùng đồng bằng sông Cửu Long đến năm 2030.
Bộ Tài nguyên và Môi trường (2016). Kịch bản biến đổi khí hậu và nước biển dâng cho Việt Nam. Nhà xuất bản Tài nguyên Môi trường và Bản đồ Việt Nam.
Borode, A.O., Balogun, A.M., Omoyeni, B.A. (2002). Effect of salinity on embryonic development, hatchability, and growth of African catfish, Clarias gariepinus, eggs and larvae. Journal of Applied Aquaculture, 12, 89–93. https://doi.org/10.1300/J028v12n04_08
Bui, T.M., Phan, L.T., Ingram, B. A., Nguyen, T.T.T., Gooley, G.J., Nguyen, H. V., Nguyen, P.T., De Silva, S.S. (2010). Seed production practices of striped catfish, Pangasianodon hypophthalmus in the Mekong Delta region, Vietnam. Aquaculture, 306, 92–100. https://doi.org/10.1016/j.aquaculture.-2010.06.016
Calabrese, E. J., Bachmann, K. A., Bailer, A. J., Bolger, P. M., Borak, J., Cai, L., Cedergreen, N., Cherian, M. G., Chiueh, C. C., & Clarkson, T. W. (2007). Biological stress response terminology: integrating the concepts of adaptive response and preconditioning stress within a hormetic dose–response framework. Toxicology and Applied Pharmacology, 222, 122–128. https://doi.org/10.1016/j.taap.2007.02.015
Cnaani, A., Hulata, G. (2011). Improving salinity tolerance in tilapias: Past experience and future prospects. Israel Journal of Aquaculture, Bamidgeh, 63(1). https://doi.org/10.46989/001c.20590
Dehler, C. E., Secombes, C. J., & Martin, S. A. M. (2017). Seawater transfer alters the intestinal microbiota profiles of Atlantic salmon (Salmo salar L.). Scientific Reports, 7, 13877. https://doi.org/10.1038/s41598-017-13249-8.
Donelson, J.M., Sunday, J.M., Figueira, W.F., Gaitán-Espitia, J.D., Hobday, A.J., Johnson, C.R., Leis, J.M., Ling, S.D., Marshall, D., Pandolfi, J.M., Pecl, G., Rodgers, G.G., Booth, D.J., Munday, P.L., (2019). Understanding interactions between plasticity, adaptation, and range shifts in response to marine environmental change. Philosophical Transactions of The Royal Society B, 374, 20180186. https://doi.org/10.1098/rstb.2018.0186
Evans, D. H., Piermarini, P. M., & Choe, K.P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological Reviews, 85, 97–177. https://doi.org/10.1152/physrev.00050.2003
Falconer, D.S. (1990). Selection in different environments: Effects on environmental sensitivity (reaction norm) and on mean performance. Genetics Research, 56, 57–70. https://doi.org/10.1017/S0016672300028883
FAO (2022). The State of World Fisheries and Aquaculture (SOFIA) (2022).
Fridman, S. (2020). Ontogeny of the osmoregulatory capacity of teleosts and the role of ionocytes. Frontiers in Marine Science, 7, 709. https://doi.org/10.3389/fmars.2020.00709
Gjedrem, T., & Rye, M. (2016). Selection response in fish and shellfish: A review. Reviews in Aquaculture, 10, 168–179. https://doi.org/10.1111/raq.12154
Hieu, D. Q., Hang, B. T. B., Huong, D. T. T., Kertaoui, N. El, Farnir, F., Phuong, N. T., & Kestemont, P. (2021). Salinity affects growth performance, physiology, immune responses and temperature resistance in striped catfish (Pangasianodon hypophthalmus) during its early life stages. Fish Physiology and Biochemistry, 47, 1995–2013. https://doi.org/10.1007/s10695-021-01021-9
Hieu, D. Q., Hang, B. T. B., Lokesh, J., Garigliany, M. M., Huong, D. T. T., Yen, D. T., Liem, P. T., Tam, B. M., Hai, D. M., Son, V. N., Phuong, N. T., Farnir, F., & Kestemont, P. (2022). Salinity significantly affects intestinal microbiota and gene expression in striped catfish juveniles. Applied Microbiology and Biotechnology, 106, 3245–3264. https://doi.org/10.1007/s00253-022-11895-1.
Hossain, F., Islam, S. M. M., Ashaf-Ud-Doulah, M., Ali, M. S., Islam, M. S., Brown, C., & Shahjahan, M. (2021). Influences of salinity on embryonic and larval development of striped catfish, Pangasianodon hypophthalmus. Frontiers in Marine Science, 8, 1–10. https://doi.org/10.3389/fmars.2021.781951.
Huong, D. T. T., & Quyen, N. T. (2012). Effect of salinity on embryo development and osmoregulation of striped catfish (Pangasianodon hypophthalmus) larvae and fingerlings. Can Tho University Journal of Science, 21b, 29–37.
Jaspe, C.J., Caipang, C.M.A. (2011). Increasing salinity tolerance in tilapias: Selective breeding using locally available strains. AACL Bioflux, 4, 437–441.
Lokesh, J., & Kiron, V. (2016). Transition from freshwater to seawater reshapes the skin-associated microbiota of Atlantic salmon. Scientific Report, 6, 19707. https://doi.org/10.1038/srep19707
Lokesh, J., Kiron, V., Sipkema, D., Fernandes, J. M. O., & Moum, T. (2019). Succession of embryonic and the intestinal bacterial communities of Atlantic salmon (Salmo salar) reveals stage-specific microbial signatures. Microbiologyopen, 8, e00672. https://doi.org/10.1002/mbo3.672
Martin, S.A.M., Dehler, C.E., & Król, E. (2016). Transcriptomic responses in the fish intestine. Developmental & Comparative Immunology, 64, 103–117. https://doi.org/10.1016/j.dci.2016.03.014
Nguyen, P. T. H., Do, H. T. T., Mather, P. B., & Hurwood, D. A. (2014). Experimental assessment of the effects of sublethal salinities on growth performance and stress in cultured tra catfish (Pangasianodon hypophthalmus). Fish Physiology and Biochemistry, 40, 1839–1848. https://doi.org/10.1007/s10695-014-9972-1
Nguyen, L. A., Verreth, J. A. J., Leemans, R., Bosma, R., & De Silva, S. (2016). A decision tree analysis to support potential climate change adaptations of striped catfish (Pangasianodon hypophthalmus Sauvage) farming in the Mekong Delta, Vietnam. Tropicultura, 34, Special issue, 105–115.
Nguyen, N. H. (2016). Genetic improvement for important farmed aquaculture species with a reference to carp, tilapia, and prawns in Asia: Achievements, lessons, and challenges. Fish and Fisheries, 17, 483–506. https://doi.org/10.1111/faf.12122.
Nguyen, P. T., Bui, T. M., Nguyen, T. A., & De Silva, S. (2013). Developments in hatchery technology for striped catfish (Pangasianodon hypophthalmus). In: Advances in Aquaculture Hatchery Technology. Woodhead Publ. Ltd. 498–518. https://doi.org/10.1533/9780857097460.3.498.
Nguyen, P.T.H., Do, H.T.T., Mather, P.B., Hurwood, D.A. (2014). Experimental assessment of the effects of sublethal salinities on growth performance and stress in cultured Tra catfish (Pangasianodon hypophthalmus). Fish Physiology and Biochemistry, 40, 1839–1848. https://doi.org/10.1007/s10695-014-9972-1.
Rezk, M. A., Smitherman, R. O., Williams, J. C., Nichols, A., Kucuktas, H., & Dunham, R. A. (2003). Response to three generations of selection for increased body weight in channel catfish, Ictalurus punctatus, grown in earthen ponds. Aquaculture, 228, 69–79. https://doi.org/10.1016/S0044-8486(03)00216-3
Sang, N. V., Klemetsdal, G., Ødegård, J. & Gjøen, H. M. (2012). Genetic parameters of economically important traits recorded at a given age in striped catfish (Pangasianodon hypophthalmus). Aquaculture, 344–349, 82–89. https://doi.org/10.1016/j.aquaculture.2012.03.013
Schmitz, M., Douxfils, J., Mandiki, S. N. M., Morana, C., Baekelandt, S., & Kestemont, P. (2016). Chronic hyperosmotic stress interferes with immune homeostasis in striped catfish (Pangasianodon hypophthalmus, S.) and leads to excessive inflammatory response during bacterial infection. Fish and Shellfish Immunology, 55, 550–558. https://doi.org/10.1016/j.fsi.2016.06.031.
Storset, A., Strand, C., Wetten, M., Kjøglum, S., Ramstad, A. (2007). Response to selection for resistance against infectious pancreatic necrosis in Atlantic salmon (Salmo salar L.). Aquaculture, 272, 62–68. https://doi.org/10.1016/j.aquaculture.2007.08.011
Sukhavachana, S., Poompuang, S., Onming, S., & Luengnaruemitchai, A. (2019). Heritability estimates and selection response for resistance to Streptococcus agalactiae in red tilapia Oreochromis spp. Aquaculture, 502, 384–390. https://doi.org/10.1016/j.aquaculture.2018.12.075
Suebsong, W., Poompuang, S., Srisapoome, P., Koonawootrittriron, S., Luengnaruemitchai. A., Johansen, H., & Rye, M. (2019). Selection response for Streptococcus agalactiae resistance in Nile tilapia Oreochromis niloticus. Journal of Fish Diseases , 42(11), 1553-1562. https://doi.org/10.1111/jfd.13074.
Tayamen, M. M., Abella, T. A., Reyes, R. A., Danting, M. J. C., Mendoza, A. M., Marquez, E. B., Salguet, A. C., Apaga, M. M., & González, R. C. (2004). Development of tilapia for saline waters in the Philippines. In Bolivar, R. B., Mair, G.C., & Fitzsimmons K. (Eds.), Proceeding of the 6th International symposium tilapia aquaculture in Manila, Philippines on September 12-16, 2004 – 2, Volume SET., ICLARM, Manila, Philippines (pp. 463-478).
Thoa, N. P., Ninh, N. H., Knibb, W., & Nguyen, N. H. (2016). Does selection in a challenging environment produce Nile tilapia genotypes that can thrive in a range of production systems? Scientific Report, 6, 1–11. https://doi.org/10.1038/srep21486
Tran, D. L., Olesen, I., Ødegård, J., Kolstad, K., & Nguyen, C. D. (2008). Genotype by environment interaction for harvest body weight and survival of Nile tilapia (Oreochromis niloticus) in brackish and freshwater ponds. The Proceedings of 8th International Symposium on Tilapia in Aquaculture (Egypt) (pp. 231–239).
Vu, N. T., Sang, N. V, Phuc, T. H., Vuong, N. T., & Nguyen, N. H. (2019). Genetic evaluation of a 15-year selection program for high growth in striped catfish Pangasianodon hypophthalmus. Aquaculture, 509, 221–226. https://doi.org/10.1016/j.aquaculture.2019.05.034.