Lê Sĩ Thiện Lê Huyền Quyên *

* Tác giả liên hệ (lhquyen@ctuet.edu.vn)

Abstract

The microfluidic behavior of highly viscous in micro-capillary was investigated by the infiltration technique. Computational Fluid Dynamics (CFD) simulations were conducted to predict the flow behavior, filling time, and filling length. The results showed good agreement with experiments. The experimental results indicated that fluid viscosities were not found to depend on capillary dimensions, so the microscale viscosity can be regarded as equal to the bulk viscosity. This equivalence means that this technique can be employed to determine the melt viscosity of certain glasses. However, when using this method, the effects of the capillary radius and interfacial reactions between the filling glass melts and capillaries should be carefully investigated; otherwise, they can influence the precision of the measurement.

Keywords: Microfluidic behavior, micro-capillary, simulation, viscosity

Tóm tắt

Đặc tính vi lỏng của chất lỏng có độ nhớt cao trong ống vi mao quản  được khảo sát bằng kỹ thuật sử dụng áp suất hỗ trợ. Các mô phỏng CFD được thực hiện để dự đoán đặc tính dòng chảy, thời gian và chiều dài dâng lên trong ống vi mao quản. Kết quả mô phỏng cho thấy sự tương đồng với thực nghiệm. Kết quả thực nghiệm chỉ ra rằng độ nhớt của chất lỏng trong ống vi mao quản không phụ thuộc đường kính của ống, vì thế độ nhớt đo được từ phương pháp này tương đương với độ nhớt được đo bằng những phương pháp thông dụng. Điều này cho phép kỹ thuật hỗ trợ áp suất có thể được sử dụng để xác định độ nhớt nóng chảy của một số loại thủy tinh nhất định. Tuy nhiên, độ chính xác của phương pháp này phụ thuộc phần lớn vào kích thước ống mao dẫn và những phản ứng bề mặt xảy ra giữa thủy tinh nóng chảy bên trong và ống mao quản.

Từ khóa: Vi lỏng, độ nhớt, vi mao quản, mô phỏng

Article Details

Tài liệu tham khảo

Bosanquet, C. H. (1923). LV. On the flow of liquids into capillary tubes. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(267), 525-531. https://doi.org/10.1080/14786442308634144

Chryssolouris, G. (1991). Laser Machining: Theory and Practice. Springer-Verlag Berlin.

Da, N., Enany, A. A., Granzow, N., Schmidt, M. A., Russell, P. S. J., & Wondraczek, L. (2011a). Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices. Journal of Non-Crystalline Solids, 357(6), 1558-1563. https://doi.org/https://doi.org/10.1016/j.jnoncrysol.2010.12.032

Da, N., Grassmé, O., Nielsen, K. H., Peters, G., & Wondraczek, L. (2011b). Formation and structure of ionic (Na, Zn) sulfophosphate glasses. Journal of Non-Crystalline Solids, 357(10), 2202-2206. https://doi.org/https://doi.org/10.1016/j.jnoncrysol.2011.02.037

Duncombe, T. A., Tentori, A. M., & Herr, A. E. (2015). Microfluidics: reframing biological enquiry [Review Article]. Nature Reviews Molecular Cell Biology, 16, 554. https://doi.org/10.1038/nrm4041

Ehrfeld, W., Golbig, K., Hessel, V., Löwe, H., & Richter, T. (1999). Characterization of Mixing in Micromixers by a Test Reaction: Single Mixing Units and Mixer Arrays. Industrial and Engineering Chemistry Research, 38(3), 1075-1082. https://doi.org/10.1021/ie980128d

Fries, N., & Dreyer, M. (2008). An analytic solution of capillary rise restrained by gravity. Journal of Colloid and Interface Science, 320(1), 259-263. https://doi.org/https://doi.org/10.1016/j.jcis.2008.01.009

Ghanbari‐Ahari, K., & Cameron, A. M. (1993). Phase Diagram of Na2O‐B2O3‐SiO2 System. Journal of the American Ceramic Society, 76(8), 2017-2022. https://doi.org/doi:10.1111/j.1151-2916.1993.tb08326.x

Groß, G. A., Thelemann, T., Schneider, S., Boskovic, D., & Köhler, J. M. (2008). Fabrication and fluidic characterization of static micromixers made of low temperature cofired ceramic (LTCC). Chemical Engineering Science, 63(10), 2773-2784. https://doi.org/10.1016/j.ces.2008.02.030

Hessel, V., Renken, A., Schouten, J. C., & Yoshida, J. I. (2009). Micro Process Engineering: A Comprehensive Handbook (V. Hessel, A. Renken, J. C. Schouten, & J. I. Yoshida, Eds. Vol. 1-3). Wiley-VCH Verlag GmbH.

Ikuta, K., Hirowatari, K., & Ogata, T. (1994). Three dimensional micro integrated fluid systems (MIFS) fabricated by stereo lithography. Proceedings IEEE Micro Electro Mechanical Systems An Investigation of Micro Structures, Sensors, Actuators, Machines and Robotic Systems, https://doi.org/10.1109/MEMSYS.1994.555588

Kaiura, G. H., & Toguri, J. M. (1976). The viscosity and structure of sodium borate melts. Physics and Chemistry of Glasses, (17), 62-69.

Kashid, M., Renken, A., & Kiwi-Minsker, L. (2011). Mixing efficiency and energy consumption for five generic microchannel designs. Chemical Engineering Journal, 167(2–3), 436-443. https://doi.org/10.1016/j.cej.2010.09.078

Kneissl, M., Hofstetter, D., Bour, D. P., Donaldson, R., Walker, J., & Johnson, N. M. (1998). Dry-etching and characterization of mirrors on III-nitride laser diodes from chemically assisted ion beam etching. Journal of Crystal Growth, 189-190, 846-849. https://doi.org/10.1016/S0022-0248(98)00307-8

Kunowa, K., Schmidt-Lehr, S., Pauer, W., Moritz, H.-U., & Schwede, C. (2007). Characterization of Mixing Efficiency in Polymerization Reactors Using Competitive-Parallel Reactions. Macromolecular Symposia, 259(1), 32-41. https://doi.org/10.1002/masy.200751305

Leedecke, C. J., & Bergeron, C. G. (1977). Viscous Flow in Binary Borate Melts. In L. D. Pye, V. D. Fréchette, & N. J. Kreidl (Eds.), Borate glasses: structure, properties and applications (Vol. 12, pp. 413-426). Plenum Press.

Lucas, R. (1918). Ueber das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten. Kolloid-Zeitschrift, 23(1), 15-22. https://doi.org/10.1007/BF01461107

Malkin, A. Y., & Isayev, A. I. (2012). Rheology: Concepts, Methods, and Applications ChemTec Publishing.

Müller, H. U., David, C., Völkel, B., & Grunze, M. (1995). Nanostructuring of alkanethiols with ultrasharp field emitters. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 13(6), 2846-2849. https://doi.org/10.1116/1.588302

Nascimento, M. L. F., & Aparicio, C. (2007). Data classification with the Vogel–Fulcher–Tammann–Hesse viscosity equation using correspondence analysis. Physica B: Condensed Matter, 398(1), 71-77. https://doi.org/https://doi.org/10.1016/j.physb.2007.04.074

SciGlass - Glass Property Information System, SciGlass 7.12 In. SciGlass - Glass Property Information System, SciGlass 7.12.

Schmelzer, J. W. P., Zanotto, E. D., & Fokin, V. M. (2005). Pressure dependence of viscosity. The Journal of Chemical Physics, 122(7), 074511. https://doi.org/10.1063/1.1851510

Schueller, O. J. A., Brittain, S. T., & Whitesides, G. M. (1999). Fabrication of glassy carbon microstructures by soft lithography. Sensors and Actuators A: Physical, 72(2), 125-139. https://doi.org/https://doi.org/10.1016/S0924-4247(98)00218-0

Thamdrup, L. H., Persson, F., Bruus, H., Kristensen, A., & Flyvbjerg, H. (2007). Experimental investigation of bubble formation during capillary filling of SiO2 nanoslits. Applied Physics Letters, 91(16), 163505. https://doi.org/10.1063/1.2801397

Washburn, E. W. (1921). The Dynamics of Capillary Flow. Physical Review, 17(3), 273-283. https://link.aps.org/doi/10.1103/PhysRev.17.273

Weitz, D. A., Stokes, J. P., Ball, R. C., & Kushnick, A. P. (1987). Dynamic Capillary-Pressure in Porous-Media - Origin of the Viscous-Fingering Length Scale. Physical Review Letters, 59(26), 2967-2970. https://doi.org/DOI 10.1103/PhysRevLett.59.2967

Wondraczek, L., & Mauro, J. C. (2009a). Advancing glasses through fundamental research. Journal of the European Ceramic Society, 29(7), 1227-1234. https://doi.org/https://doi.org/10.1016/j.jeurceramsoc.2008.08.006

Wondraczek, L., Krolikowski, S., & Behrens, H. (2009b). Relaxation and Prigogine–Defay ratio of compressed glasses with negative viscosity-pressure dependence. The Journal of Chemical Physics, 130(20), 204506. https://doi.org/10.1063/1.3141382

Xue, H. T., Fang, Z. N., Yang, Y., Huang, J. P., & Zhou, L. W. (2006). Contact angle determined by spontaneous dynamic capillary rises with hydrostatic effects: Experiment and theory. Chemical Physics Letters, 432(1), 326-330. https://doi.org/https://doi.org/10.1016/j.cplett.2006.10.017

Zhao, D., Wang, G., He, Z., Wang, H., Zhang, Q., & Li, Y. (2015). Controllable construction of micro/nanostructured NiO arrays in confined microchannels via microfluidic chemical fabrication for highly efficient and specific absorption of abundant proteins [10.1039/C5TB00324E]. Journal of Materials Chemistry B, 3(20), 4272-4281. https://doi.org/10.1039/C5TB00324E