Lương Huỳnh Vủ Thanh * , Hồ Hữu Lợi , Lê Phước Pha , Đặng Huỳnh Giao Cao Lưu Ngọc Hạnh

* Tác giả liên hệ (lhvthanh@ctu.edu.vn)

Abstract

This study aimed to synthesize bead adsorbent and evaluate its adsorption performance to methylene blue by the influence of various factors such as  pH, time and concentration. The results of thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, specific surface area analysis and surface potential revealed that the materials were successfully synthesized, with the typical groups of chitosan and of alginate. The adsorbent bead adsorbed Methylene blue with a yield of 85.33 ± 0.85% corresponding to adsorption capacity of 4.27 mg/g at optimal conditions of pH 8, adsorption time of 3 hours and concentration of 10 ppm. The adsorption of Methylene blue followed Freundlich isotherm model, the Pseudo-second order model and was a physical adsorption process.

Keywords: Adsorption, bead, cellulose, chitosan, sugarcane bagasse

Tóm tắt

Nghiên cứu được thực hiện với mục tiêu là tổng hợp vật liệu hấp phụ dạng hạt và đánh giá khả năng hấp phụ Methylene blue trong nước của vật liệu với sự ảnh hưởng bởi các yếu tố: pH, thời gian, nồng độ. Kết quả của phân tích nhiệt trọng lượng, phổ hồng ngoại biến đổi Fuorier, hiển vi điện tử quét, diện tích bề mặt riêng và điện tích bề mặt cho thấy vật liệu được tổng hợp thành công, có các nhóm chức đặc trưng của chitosan và của sodium alginate. Hạt vật liệu hấp phụ Methylene blue với hiệu suất 85,33 ± 0,85% ứng với dung lượng 4,27 mg/g ở các điều kiện tối ưu pH 8, thời gian hấp phụ 3 giờ và nồng độ 10 ppm. Quá trình hấp phụ Methylene blue tuân theo mô hình hấp phụ đẳng nhiệt Freundlich, có động học hấp phụ giả định bậc 2 và là quá trình hấp phụ vật lý.

Từ khóa: Bã mía, cellulose, chitosan, hạt, hấp phụ

Article Details

Tài liệu tham khảo

Alamin, N. U., Khan, A. S., Nasrullah, A., Iqbal, J., Ullah, Z., Din, I. U., Muhammad, N., & Khan, S. Z. (2021). Activated carbon-alginate beads impregnated with surfactant as sustainable adsorbent for efficient removal of methylene blue. International Journal of Biological Macromolecules, 176, 233-243. https://doi.org/10.1016/j.ijbiomac.2021.02.017

Andrade Siqueira, T. C., Zanette da Silva, I., Rubio, A. J., Bergamasco, R., Gasparotto, F., Aparecida de Souza Paccola, E., & Ueda Yamaguchi, N. (2020). Sugarcane bagasse as an efficient biosorbent for methylene blue removal: kinetics, isotherms and thermodynamics. International Journal of Environmental Research and Public Health, 17(2), 526. https://doi.org/10.3390/ijerph17020526

Atar, N., Olgun, A., & Wang, S. (2012). Adsorption of cadmium (II) and zinc (II) on boron enrichment process waste in aqueous solutions: batch and fixed-bed system studies. Chemical Engineering Journal, 192, 1-7. https://doi.org/10.1016/j.cej.2012.03.067

Chan, C. H., Chia, C. H., Zakaria, S., Sajab, M. S., & Chin, S. X. (2015). Cellulose nanofibrils: a rapid adsorbent for the removal of methylene blue. RSC Advances, 5(24), 18204-18212. https://doi.org/10.1039/C4RA15754K

Chen, L., Li, Y., Hu, S., Sun, J., Du, Q., Yang, X., Ji, Q., Wang, D., & Xia, Y. (2016). Removal of methylene blue from water by cellulose/graphene oxide fibres. Journal of experimental Nanoscience, 11(14), 1156-1170. https://doi.org/10.1080/17458080.2016.1198499

Dąbrowski, A. (2001). Adsorption—from theory to practice. Advances in colloid and interface science, 93(1-3), 135-224. https://doi.org/10.1016/S0001-8686(00)00082-8

Danewalia, S. S., & Singh, K. (2021). Bioactive glasses and glass–ceramics for hyperthermia treatment of cancer: state-of-art, challenges, and future perspectives. Materials Today Bio, 10, 100100. https://doi.org/10.1016/j.mtbio.2021.100100

Flores-Hernández, C. G., Cornejo-Villegas, M. D. L. A., Moreno-Martell, A., & Del Real, A. (2021). Synthesis of a Biodegradable Polymer of Poly (Sodium Alginate/Ethyl Acrylate). Polymers, 13(4), 504. https://doi.org/10.3390/polym13040504

Hokkanen, S., Bhatnagar, A., & Sillanpää, M. (2016). A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Research, 91, 156-173. https://doi.org/10.1016/j.watres.2016.01.008.

Hydari, S., Sharififard, H., Nabavinia, M., & reza Parvizi, M. (2012). A comparative investigation on removal performances of commercial activated carbon, chitosan biosorbent and chitosan/activated carbon composite for cadmium. Chemical Engineering Journal, 193, 276-282. https://doi.org/10.1016/j.cej.2012.04.057

Ibitoye, E. B., Lokman, I. H., Hezmee, M. N. M., Goh, Y. M., Zuki, A. B. Z., & Jimoh, A. A. (2018). Extraction and physicochemical characterization of chitin and chitosan isolated from house cricket. Biomedical Materials, 13(2), 025009. https://doi.org/10.1088/1748-605X/aa9dde

Jia, P., Tan, H., Liu, K., & Gao, W. (2018). Removal of methylene blue from aqueous solution by bone char. Applied Sciences, 8(10), 1903. https://doi.org/10.3390/app8101903

Kuśmierek, K., & Świątkowski, A. (2015). The influence of different agitation techniques on the adsorption kinetics of 4-chlorophenol on granular activated carbon. Reaction Kinetics, Mechanisms and Catalysis, 116(1), 261-271. https://doi.org/10.1007/s11144-015-0889-1

Long, Đ. T. (2020). Vật liệu CuBDC từ tính: Tổng hợp, đặc trưng và ứng dụng xử lý chất màu xanh methylen. Journal of Science and Technology-IUH, 44(02). https://doi.org/10.46242/jst-iuh.v44i02.567

Mahmood, T., Saddique, M. T., Naeem, A., Westerhoff, P., Mustafa, S., & Alum, A. (2011). Comparison of different methods for the point of zero charge determination of NiO. Industrial & Engineering Chemistry Research, 50(17), 10017-10023. https://doi.org/10.1021/ie200271d

Melo, B. C., Paulino, F. A., Cardoso, V. A., Pereira, A. G., Fajardo, A. R., & Rodrigues, F. H. (2018). Cellulose nanowhiskers improve the methylene blue adsorption capacity of chitosan-g-poly (acrylic acid) hydrogel. Carbohydrate Polymers, 181, 358-367. https://doi.org/10.1016/j.carbpol.2017.10.079

Mohammed, N., Grishkewich, N., Waeijen, H. A., Berry, R. M., & Tam, K. C. (2016). Continuous flow adsorption of methylene blue by cellulose nanocrystal-alginate hydrogel beads in fixed bed columns. Carbohydrate Polymers, 136, 1194-1202. https://doi.org/10.1016/j.carbpol.2015.09.099

Mokhtari, A., Sabzi, M., & Azimi, H. (2021). 3D porous bioadsorbents based on chitosan/alginate/cellulose nanofibers as efficient and recyclable adsorbents of anionic dye. Carbohydrate Polymers, 265, 118075. https://doi.org/10.1016/j.carbpol.2021.118075

Moorthy, A. K., Rathi, B. G., Shukla, S. P., Kumar, K., & Bharti, V. S. (2021). Acute toxicity of textile dye Methylene blue on growth and metabolism of selected freshwater microalgae. Environmental Toxicology and Pharmacology, 82, 103552. https://doi.org/10.1016/j.etap.2020.103552

Mousa, N. E., Simonescu, C. M., Pătescu, R. E., Onose, C., Tardei, C., Culiţă, D. C., Oprea, O., Patroi, D., & Lavric, V. (2016). Pb2+ removal from aqueous synthetic solutions by calcium alginate and chitosan coated calcium alginate. Reactive and Functional Polymers, 109, 137-150. https://doi.org/10.1016/j.reactfunctpolym.2016.11.001

Myers, A. L. (2002). Thermodynamics of adsorption in porous materials. AIChE journal, 48(1), 145-160. https://doi.org/10.1002/aic.690480115

Ngọc, T. Q., Nguyen, H. T. T., & Thang, V. N. (2019). Investigation of methylene blue adsorption capacity of porous chitosan particles. Science & Technology Development Journal-Engineering and Technology, 2(SI2), SI21-SI30. https://doi.org/10.32508/stdjet.v2iSI2.467

Peniche-Covas, C., Argüelles-Monal, W., & San Román, J. (1993). A kinetic study of the thermal degradation of chitosan and a mercaptan derivative of chitosan. Polymer Degradation and Stability, 39(1), 21-28. https://doi.org/10.1016/0141-3910(93)90120-8

Pham, V. V., Nguyen, T. C., Le, H. V., & Cao, T. M. (2017). Synthesis and evaluation of the methylene blue removal ability of Cu2O nanoparticles/TiO2 nanotubes heterostructure. Science and Technology Development Journal-Natural Sciences, 1(T4), 115-122. https://doi.org/10.32508/stdjns.v1iT4.498

Phượng, N. T. T & Lâm, N. H. (2018). Nghiên cứu ứng dụng công nghệ plasma lạnh để loại bỏ thành phần hữu cơ và độ màu trong nước thải dệt nhuộm. Tạp chí Môi trường, số Chuyên đề IV, 63-69.

Sankalia, M. G., Mashru, R. C., Sankalia, J. M., & Sutariya, V. B. (2007). Reversed chitosan–alginate polyelectrolyte complex for stability improvement of alpha-amylase: Optimization and physicochemical characterization. European Journal of Pharmaceutics and Biopharmaceutics, 65(2), 215-232. https://doi.org/10.1016/j.ejpb.2006.07.014

Soares, J. D. P., Santos, J. E., Chierice, G. O., & Cavalheiro, E. T. G. (2004). Thermal behavior of alginic acid and its sodium salt. Eclética Química, 29, 57-64. https://doi.org/10.1590/S0100-46702004000200009

Somsesta, N., Sricharoenchaikul, V., & Aht-Ong, D. (2020). Adsorption removal of methylene blue onto activated carbon/cellulose biocomposite films: equilibrium and kinetic studies. Materials Chemistry and Physics, 240, 122221. https://doi.org/10.1016/j.matchemphys.2019.122221

Tan, Y., Wang, X., Xiong, F., Ding, J., Qing, Y., & Wu, Y. (2021). Preparation of lignin-based porous carbon as an efficient absorbent for the removal of methylene blue. Industrial Crops and Products, 171, 113980. https://doi.org/10.1016/j.indcrop.2021.113980

Tara, N., Siddiqui, S. I., Rathi, G., Chaudhry, S. A., & Asiri, A. M. (2020). Nano-engineered adsorbent for the removal of dyes from water: A review. Current Analytical Chemistry, 16(1), 14-40. https://doi.org/10.2174/1573411015666190117124344

Trinh, T. D., & Phuong, N. T. H. (2020). Synthesis of Magnetic Biochar and Their Application for the Treatment of Methylene Blue in Water. VNU Journal of Science: Natural Sciences And Technology, 36(1), 9-19. https://doi.org/10.25073/2588-1140/vnunst.4939

Trung, Đ. M. (2018). Khảo sát khả năng xử lý Methylene Blue bằng than Mắc-ca được hoạt hóa bằng hóa chất KOH. Tạp chí Khoa học – Trường ĐHSP TP HCM, 15(12), 43-51.

Utomo, H. D., Phoon, R. Y. N., Shen, Z., Ng, L. H., & Lim, Z. B. (2015). Removal of methylene blue using chemically modified sugarcane bagasse. Natural resources, 6(04), 209. 10.4236/nr.2015.64019.

Vadivelan, V., & Kumar, K. V. (2005). Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. Journal of colloid and interface science, 286(1), 90-100. https://doi.org/10.1016/j.jcis.2005.01.007

Vijayalakshmi, K., Devi, B. M., Latha, S., Gomathi, T., Sudha, P. N., Venkatesan, J., & Anil, S. (2017). Batch adsorption and desorption studies on the removal of lead (II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads. International journal of Biological Macromolecules, 104, 1483-1494. https://doi.org/10.1016/j.ijbiomac.2017.04.120

Vijayalakshmi, K., Gomathi, T., & Sudha, P. N. (2014). Preparation and characterization of nanochitosan/sodium alginate/microcrystalline cellulose beads. Der Pharmacia Lettre, 6(4), 65-77.

Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12-13), 1781-1788. https://doi.org/10.1016/j.fuel.2006.12.013

Yaseen, D. A., & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. International journal of environmental science and technology, 16(2), 1193-1226. https://doi.org/10.1007/s13762-018-2130-z

Zhou, C., Wu, Q., Lei, T., & Negulescu, I. I. (2014). Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Chemical Engineering Journal, 251, 17-24. https://doi.org/10.1016/j.cej.2014.04.034