Ảnh hưởng của tần suất cho ăn và khả năng tăng cường hiệu quả của β-glucan và vitamin C đối với vaccine phòng bệnh Edwarsiella ictaluri lây nhiễm trên cá tra (Pangasianodon hypophthalmus)
Abstract
This study was evaluated the effects of feeding frequency using an oral vaccine and the potential of β-glucan and vitamin C to enhance the vaccine efficacy in preventing bacilli necrosis in striped catfish. Experiment 1 evaluating vaccine feeding frequency was arranged with 5 treatments with oral vaccines used at different feeding frequencies and 1 control. The results revealed that the fish fed with vaccine continuously for 9 days had the greatest RPS value (42±7.07%) when challenged with E. ictaluri, whereas the growth performance of vaccine treatment groups was lower than in the control, but the difference was not significant (p>0.05). In experiment 2, fish was fed with the vaccine continuously for 9 days in combination with different concentrations of immunostimulants. The results showed that the vaccine supplemented with 2% β-glucan not only improve the RPS value (52.4±0%) and the antibody level (6.25±1.77) but also reduce the negative effects of oral vaccines. This study revealed that the protective ability of the oral vaccine will be increased with continuous supplementation and β-glucan might be used as an adjuvant to an oral vaccination in striped catfish.
Tóm tắt
Nghiên cứu đánh giá ảnh hưởng của nhịp sử dụng vaccine cho ăn và tiềm năng của β-glucan với vitamin C trong tăng cường hiệu quả vaccine phòng bệnh gan thận mủ trên cá tra. Thí nghiệm 1 đánh giá nhịp cho ăn vaccine được thực hiện với 5 nghiệm thức vaccine cho ăn các nhịp khác nhau và nghiệm thức đối chứng. Kết quả cho thấy nghiệm thức sử dụng vaccine liên tục 9 ngày có giá trị RPS cao nhất (42±7,07%) khi cảm nhiễm với E. ictaluri, tăng trưởng của cá ở nghiệm thức cho ăn vaccine thấp hơn so với đối chứng nhưng khác biệt không có ý nghĩa (p>0,05). Thí nghiệm 2 bổ sung kết hợp β-glucan và vitamin C vào vaccine cho ăn liên tục trong 9 ngày. Nghiệm thức vaccine kết hợp 2% β-glucan cải thiện RPS (52,4±0%) và hiệu giá kháng thể (6,25±1,77), đồng thời làm giảm tác dụng phụ của vaccine cho ăn. Kết quả nghiên cứu cho thấy khả năng bảo hộ của vaccine cho ăn gia tăng khi bổ sung liên tục và β-glucan có thể sử dụng như chất bổ trợ đối với vaccine cho ăn trên cá tra.
Article Details
Tài liệu tham khảo
Amend, D. F. (1981). Potency testing of fish vaccines. Dev Biol Stand. 49:447–454.
Akinbowale, O. L., Peng, H., & Barton, M. D. (2006). Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia. Journal of Applied Microbiology, 100(5), 1103–1113. https://doi.org/10.1111/j.1365-2672.2006.02812.x
Ashida, T., Okimasu, E., Ui, M., Heguri, M., Oyama, Y., & Amemura, A. (1999). Protection of Japanese flounder Paralichthys olivaceus against experimental edwardsiellosis by formalin-killed Edwardsiella tarda in combination with oral administration of immunostimulants. Fisheries Science, 65(4), 527–530. https://doi.org/10.2331/fishsci.65.527
Ballesteros, N. A., Saint-Jean, S. R., & Perez-Prieto, S. I. (2014). Food pellets as an effective delivery method for a DNA vaccine against infectious pancreatic necrosis virus in rainbow trout (Oncorhynchus mykiss, Walbaum). Fish & Shellfish Immunology, 37(2), 220–228. https://doi.org/10.1016/j.fsi.2014.02.003
Brudeseth, B. E., Wiulsrød, R., Fredriksen, B. N., Lindmo, K., Løkling, K.-E., Bordevik, M., Steine, N., Klevan, A., & Gravningen, K. (2013). Status and future perspectives of vaccines for industrialised fin-fish farming. Fish & Shellfish Immunology, 35(6), 1759–1768. https://doi.org/10.1016/j.fsi.2013.05.029
Cabello, F. C. (2006). Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environmental Microbiology, 8(7), 1137–1144. https://doi.org/10.1111/j.1462-2920.2006.01054.x
Dadar, M., Dhama, K., Vakharia, V. N., Hoseinifar, S. H., Karthik, K., Tiwari, R., Khandia, R., Munjal, A., Salgado-Miranda, C., & Joshi, S. K. (2017). Advances in aquaculture vaccines against fish pathogens: global status and current trends. Reviews in Fisheries Science and Aquaculture, 25(3), 184–217. https://doi.org/10.1080/23308249.2016.1261277
Dubois, B., Goubier, A., Joubert, G., & Kaiserlian, D. (2005). Oral tolerance and regulation of mucosal immunity. Cellular and Molecular Life Sciences: CMLS, 62(12), 1322–1332. https://doi.org/10.1007/s00018-005-5036-0
Dung, T. T., Haesebrouck, F., Tuan, N. A., Sorgeloos, P., Baele, M., & Decostere, A. (2008). Antimicrobial susceptibility pattern of Edwardsiella ictaluri Isolates from natural outbreaks of bacillary necrosis of Pangasianodon hypophthalmus in Vietnam. Microbial Drug Resistance, 14(4), 311–316. https://doi.org/10.1089/mdr.2008.0848
Figueras, A., Santarém, M. M., & Novoa, B. (1998). Influence of the sequence of administration of β-glucans and a Vibrio damsela vaccine on the immune response of turbot (Scophthalmus maximus L.). Veterinary Immunology and Immunopathology, 64(1), 59–68. https://doi.org/10.1016/S0165-2427(98)00114-7
Jaafar, R. M., Al-Jubury, A., Dalsgaard, I., MohammadKarami, A., Kania, P. W., & Buchmann, K. (2019). Effect of oral booster vaccination of rainbow trout against Yersinia ruckeri depends on type of primary immunization. Fish & Shellfish Immunology, 85, 61–65. https://doi.org/10.1016/j.fsi.2017.10.049
Joosten, P. H. M., Engelsma, M. Y., Van der Zee, M. D., & Rombout, J. (1997). Induction of oral tolerance in carp (Cyprinus carpio L.) after feeding protein antigens. Veterinary Immunology and Immunopathology, 60(1–2), 187–196. https://doi.org/10.1016/S0165-2427(97)00124-4
Kahieshesfandiari, M., Sabri, M. Y., Ina-Salwany, M. Y., Hassan, M. D., Noraini, O., Ajadi, A. A., & Isiaku, A. I. (2019). Streptococcosis in Oreochromis sp.: is feed-based biofilm vaccine of Streptococcus agalactiae effective? Aquaculture International, 27(3), 817–832. https://doi.org/10.1007/s10499-019-00372-8
Kamilya, D., Maiti, T. K., Joardar, S. N., & Mal, B. C. (2006). Adjuvant effect of mushroom glucan and bovine lactoferrin upon Aeromonas hydrophila vaccination in catla, Catla catla (Hamilton). Journal of Fish Diseases, 29(6), 331–337. https://doi.org/10.1111/j.1365-2761.2006.00722.x
Khôi, L. M., Dung, T. T., Hằng, B. T. B., Seng, E. K., Hian, S. K., Hoa, T. T. T., & Thy, Đ. T. M. (2021). Đánh giá hiệu quả miễn dịch của vaccine phòng bệnh xuất huyết do vi khuẩn Aeromonas hydrophila trên cá tra (Pangasianodon hypophthalmus). Tạp Chí Khoa Học Trường Đại Học Cần Thơ, 57(3), 181–190. https://doi.org/10.22144/ctu.jvn.2021.100
Kole, S., Qadiri, S. S. N., Shin, S.-M., Kim, W.-S., Lee, J., & Jung, S.-J. (2019). PLGA encapsulated inactivated-viral vaccine: formulation and evaluation of its protective efficacy against viral haemorrhagic septicaemia virus (VHSV) infection in olive flounder (Paralichthys olivaceus) vaccinated by mucosal delivery routes. Vaccine, 37(7), 973–983. https://doi.org/10.1016/j.vaccine.2018.12.063
Komar, C., Enright, W. J., Grisez, L., & Tan, Z. (2004). Understanding fish vaccination. Aqua Culture Asia Pacific Magazine, 27–29.
Le, T. C., & Cheong, F. (2010). Perceptions of risk and risk management in Vietnamese catfish farming: an empirical study. Aquaculture Economics & Management, 14(4), 282–314. https://doi.org/10.1080/13657305.2010.526019
Midtlyng, P. J., & Lillehaug, A. (1998). Growth of Atlantic salmon Salmo salar after intraperitoneal administration of vaccines containing adjuvants. Diseases of Aquatic Organisms, 32(2), 91–97. https://doi.org/10.3354/dao032091
Midtlyng, P. J., Reitan, L. J., & Speilberg, L. (1996). Experimental studies on the efficacy and side-effects of intraperitoneal vaccination of Atlantic salmon (Salmo salar L.) against furunculosis. Fish & Shellfish Immunology, 6(5), 335–350. https://doi.org/10.1006/fsim.1996.0034
Mutoloki, S., Munang’andu, H. M., & Evensen, Ø. (2015). Oral vaccination of fish–antigen preparations, uptake, and immune induction. Frontiers in Immunology, 6, 519. https://doi.org/10.3389/fimmu.2015.00519
Petit, J., & Wiegertjes, G. F. (2016). Long-lived effects of administering β-glucans: Indications for trained immunity in fish. Developmental & Comparative Immunology, 64, 93–102. https://doi.org/10.1016/j.dci.2016.03.003
Plant, K. P., & LaPatra, S. E. (2011). Advances in fish vaccine delivery. Developmental & Comparative Immunology, 35(12), 1256–1262. https://doi.org/10.1016/j.dci.2011.03.007
Roberson, B.S. (1990). Bacterial agglutination. In Stolen, J.S., Fletcher, T.C., Anderson, D.P., Roberson, B.S. & van Muiswinkel, W.B. (Eds.), Techniques in fish immunology (pp. 81-86). SOS Publications, New Haven, NJ.
Samuel, M., Lam, T. J., & Sin, Y. M. (1996). Effect of Laminaran [β (1, 3)-D-Glucan] on the protective immunity of blue gourami, Trichogaster trichopterus against Aeromonas hydrophila. Fish & Shellfish Immunology, 6(6), 443–454. https://doi.org/10.1006/fsim.1996.0042
Santos, Y., García‐Marquez, S., Pereira, P. G., Pazos, F., Riaza, A., Silva, R., El Morabit, A., & Ubeira, F. M. (2005). Efficacy of furunculosis vaccines in turbot, Scophthalmus maximus (L.): evaluation of immersion, oral and injection delivery. Journal of Fish Diseases, 28(3), 165–172. https://doi.org/10.1111/j.1365-2761.2005.00610.x
Selvaraj, V., Sampath, K., & Sekar, V. (2005). Administration of yeast glucan enhances survival and some non-specific and specific immune parameters in carp (Cyprinus carpio) infected with Aeromonas hydrophila. Fish & Shellfish Immunology, 19(4), 293–306. https://doi.org/10.1016/j.fsi.2005.01.001
Selvaraj, V., Sampath, K., & Sekar, V. (2006). Adjuvant and immunostimulatory effects of β-glucan administration in combination with lipopolysaccharide enhances survival and some immune parameters in carp challenged with Aeromonas hydrophila. Veterinary Immunology and Immunopathology, 114(1–2), 15–24. https://doi.org/10.1016/j.vetimm.2006.06.011
Skov, J., Kania, P. W., Holten-Andersen, L., Fouz, B., & Buchmann, K. (2012). Immunomodulatory effects of dietary β-1, 3-glucan from Euglena gracilis in rainbow trout (Oncorhynchus mykiss) immersion vaccinated against Yersinia ruckeri. Fish & Shellfish Immunology, 33(1), 111–120. https://doi.org/10.1016/j.fsi.2012.04.009
Subasinghe, R. (1997). Fish health and quarantine. FAO Fisheries Circular, 45–49.
Siriyappagouder, P., Shankar, K. M., Kumar, B. T. N., Patil, R., & Byadgi, O. V. (2014). Evaluation of biofilm of Aeromonas hydrophila for oral vaccination of Channa striatus. Fish & Shellfish Immunology, 41(2), 581–585. https://doi.org/10.1016/j.fsi.2014.09.021
Tafalla, C., Bøgwald, J., Dalmo, R. A., Munang’andu, H. M., & Evensen, Ø. (2014). Adjuvants in fish vaccines. Fish Vaccination, 68–84. https://doi.org/10.1002/9781118806913.ch7
Tổng cục Thuỷ sản, 2022. Dịch bệnh Thuỷ sản tiếp tục được kiểm soát. https://tongcucthuysan.gov.vn/vi-vn/nuôi-trồng-thuỷ-sản/-phòng-chống-dịch-bệnh/doc-tin/017384/2022-05-20/dich-benh-thuy-san-tiep-tuc-duoc-kiem-soat.
Thi, Q. V. C., Dung, T. T., & Hiệp, Đ. P. H. (2014). Đa kháng thuốc của hai loài vi khuẩn Edwardsiella ictaluri và Aeromonas hydrophila gây bệnh trên cá tra (Pangasianodon hypophthalmus) nuôi. Tạp Chí Khoa Học Đại Học Cần Thơ, Thuỷ sản(2), 7–14.
Thinh, N. H., Kuo, T. Y., Hung, L. T., Loc, T. H., Chen, S. C., Evensen, Ø., & Schuurman, H. J. (2009). Combined immersion and oral vaccination of Vietnamese catfish (Pangasianodon hypophthalmus) confers protection against mortality caused by Edwardsiella ictaluri. Fish & Shellfish Immunology, 27(6), 773–776. https://doi.org/10.1016/j.fsi.2009.08.012
Yao, Y.-Y., Chen, D.-D., Cui, Z.-W., Zhang, X.-Y., Zhou, Y.-Y., Guo, X., Li, A.-H., & Zhang, Y.-A. (2019). Oral vaccination of tilapia against Streptococcus agalactiae using Bacillus subtilis spores expressing Sip. Fish & Shellfish Immunology, 86, 999–1008. https://doi.org/10.1016/j.fsi.2018.12.060