Tổng hợp vật liệu Fe3O4-biochar từ bã mía ứng dụng để xử lý Safranin O trong dung dịch
Abstract
Fe3O4–biochar from sugarcane bagasse was used as a biosorbent to remove Safranin O (SO) dye in an aqueous solution. The surface characteristics of Fe3O4–biochar materials were studied by SEM/EDX method and point of zero charge (pHpzc). Batch adsorption experiments were carried out to evaluate the influence of solution pH, Fe3O4–biochar dosage, adsorption time, and initial SO concentration on the adsorption of SO by Fe3O4–biochar. The results showed that pH=6, Fe3O4–biochar dosage of 3 g in 50 mL SO sulution, adsorption time of 120 minutes, and initial SO concentration of 50 mg/L were optimum conditions for SO adsorption process. The Langmuir isotherm adsorption models described well the SO adsorption process at room temperature, with the regression coefficient R2 of 0.94. The maximum adsorption capacity of SO calculated by the Langmuir model was 12.18 mg/g. The study demonstrated that the Fe3O4–biochar can be easily separated from the solution by using an external magnet and can be effectively used to remove SO cationic dye in an aqueous solution.
Tóm tắt
Fe3O4–biochar từ bã mía được sử dụng làm chất hấp phụ sinh học để loại bỏ hợp chất màu Safranin O (SO) trong dung dịch. Đặc trưng bề mặt của Fe3O4–biochar được nghiên cứu bằng phương pháp SEM/EDX và pHpzc. Các thí nghiệm theo lô được thực hiện nhằm đánh giá ảnh hưởng của pH dung dịch, khối lượng Fe3O4–biochar, thời gian hấp phụ và nồng độ SO ban đầu đến quá trình hấp phụ. Kết quả cho thấy ở pH=6, khối lượng Fe3O4–biochar sử dụng là 3 g trong 50 mL dung dịch SO, thời gian hấp phụ ở 120 phút và nồng độ SO ban đầu ở 50 mg/L là các điều kiện thí nghiệm thích hợp cho quá trình hấp phụ SO. Mô hình hấp phụ đẳng nhiệt Langmuir mô tả tốt quá trình hấp phụ SO tại nhiệt độ phòng với R2 là 0,94. Dung lượng hấp phụ tối đa của quá trình hấp phụ SO là qmax = 12,18 mg/g. Nghiên cứu đã chứng minh rằng vật liệu Fe3O4–biochar từ bã mía có thể thu hồi một cách đơn giản sau quá trình xử lý và có thể sử dụng để loại bỏ cation màu SO trong dung dịch.
Article Details
Tài liệu tham khảo
Abd Almawgood, O. M., El Tohamy, S. A., Ismail, E. H., & Samhan, F. A. (2021). Sugarcane Bagasse Biochar with Nanomagnetite: A novel Composite Heavy Metals Pollutants Removal. Egyptian Journal of Chemistry, 64(3), 1293-1313.
doi: 10.21608/ejchem.2020.43158.2870
Ameram, N., Muhammad, S., Yusof, N. A. A. N., Ishak, S., Ali, A., Shoparwe, N. F., & Ter, T. P. (2019). Chemical composition in sugarcane bagasse: Delignification with sodium hydroxide. Malaysian Journal of Fundamental and Applied Sciences, 15(2), 232-236.
doi: 10.11113/mjfas.v15n2.1118
Chen, W., Shen, M., & Li, G. (2019). Highly-Efficient Adsorptive Removal of Tetracycline Using Magnetic Sugarcane Bagasse Biochar Modified by Lanthanum. Nature Environment and Pollution Technology, 18(2), 639-643.
Chintala, R., Mollinedo, J., Schumacher, T. E., Malo, D. D. & Julson, J. L. (2013). Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 60, 93-404.
doi: 10.1080/03650340.2013.789870
Crini, G., Peindy, H. N., Gimbert, F. & Robert, C. (2007). Removal of C. I. Basic Green 4 (Malachite Green) from Aqueous Solutions by Adsorption Using Cyclodextrin-based Adsorbent: Kinetic and Equilibrium Studies. Separation and Purification Technology, 53, 97–110.
doi: 10.1016/j.seppur.2006.06.018
Dharmendra, G., Sahoo, J. K., Hota, A., & Sahoo, S. K. (2022). Adsorptive Sequestration of Toxic Congo Red Dye from Aqueous Solution Using Fe3O4/Sugarcane Bagasse Biochar Nanocomposite. ECS Transactions, 107(1), 5127.
Gomez, V., Larrechi, M. S. & Callao, M. P. (2007). Kinetic and adsorption study of acid dye removal using activated carbon. Chemosphere, 69(7): 1151–1158.
doi: 10.1016/j.chemosphere.2007.03.076
Kannan, N. & Sundaram, M. (2001). Kinetics and mechanism of removal of methylene blue by adsorption on various carbons - comparative study. Dyes and Pigments, 51(1):25-40.
doi: 10.1016/S0143-7208(01)00056-0
Gupta, V. K., Kumar, R., Nayak, A., Saleh, T.A. & Barakat, M.A. (2013). Adsorptive Removal of Dyes from Aqueous Solution onto Carbon Nanotubes: A Review. Advances in Colloid and Interface Science, 193–194, 24-34.
doi: 10.1016/j.cis.2013.03.003
Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A. & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2), 275-290.
doi: 10.1016/j.biori.2019.09.001
Maurya, N. S., & Mittal, A. K. (2013). Removal mechanism of cationic dye (Safranin O) from the aqueous phase by dead macro fungus biosorbent. Water Science & Technology, 68(5), 1048 – 1054. doi: 10.2166/wst.2013.339.
Mohammed, M. A., Ibrahim., A. & Shitu, A. (2014). Batch Removal of Hazardous Safranin-O in Wastewater Using Pineapple Peels as an Agricultural Waste Based Adsorbent. International Journal of Environmental Monitoring and Analysis, 128-133.
doi: 10.11648/j.ijema.20140203.11
Nartey, O. D., & Zhao, B. (2014). Biochar Preparation, Characterization, and Adsorptive Capacity and Its Effect on Bioavailability of Contaminants: An Overview. Advances in Materials Science and Engineering, 14, 1-12. doi: 10.1155/2014/715398
Oladipo, M. A., Bello, I. A., Adeoye, D. O., Abdulsalam, K. A., & Giwa, A. A. (2013). Sorptive removal of dyes from aqueous solution: a review. Advances in Environmental Biology, 7(11), 3311-3327.
Phuong, D. T. M., & Loc, N. X. (2022). Rice Straw Biochar and Magnetic Rice Straw Biochar for Safranin O Adsorption from Aqueous Solution. Water, 14(2), 186. https://doi.org/10.3390/w14020186
Porkodi, K., & Kumar, K. V. (2007). Equilibrium, Kinetics and Mechanism Modeling and Simulation of Basic and Acid Dyes Sorption onto Jute Fiber Carbon: Eosin Yellow, Malachite Green and Crystal Violet Single Component Systems. Journal of Hazardous Materials, 143(1-2): 311-327.
doi: 10.1016/j.jhazmat.2006.09.029
Reguyal, F., & Sarmah, A. K. (2018). Adsorption of sulfamethoxazole by magnetic biochar: Effects of pH, ionic strength, natural organic matter and 17α-ethinylestradiol. Science of the total environment, 628-629:722-730.
doi: 10.1016/j.scitotenv.2018.01.323
Sun, P., Hui, C., Khan, R. A., Du, J., Zhang, Q., & Zhao, Y-H. (2015). Effcient removal of crystal violet using Fe3O4–coated biochar: the role of the Fe3O4 nanoparticles and modeling study their adsorption behavior. Scientific Reports, 5, 12638.
doi: 10.1038/srep12638.
Vidovix, T. B., Quesada, H. B., Bergamasco, R., Vieira, M. F., & Vieira, A. M. S. (2021). Adsorption of Safranin-O dye by copper oxide nanoparticles synthesized from Punica granatum leaf extract. Environmental Technology, 1–17.
doi: 10.1080/09593330.2021.1914180
Farahani, M., Kashisaz M., & Abdullah S. R. S. (2015). Adsorption of Safranin O from Aqueous Phase Using Sugarcane Bagasse. International Journal of Ecological Science and Environmental Engineering, 2(3), 17-29.
Yaoji, T., Rui, Y., Dong, M., Bin, Z., Linhui, Z., & Jing, Y. (2018). Removal of Methyl Orange from Aqueous Solution by Adsorption onto a Hydrogel Composite. Polymers and Polymer Composites, 26(2), 161-168.
doi: 10.1177/096739111802600204