Nghiên cứu tăng cường độ chính xác của cảm biến quang học sử dụng ánh sáng cận hồng ngoại định hướng ứng dụng y sinh
Abstract
This research work presented the figure of merits of optical sensor using prism based on surface plasmon resonance with thin layer of Ag, and the wavelength of 1064 nm. The simulated results showed that the sensor with Ag layer of 60 nm coated will give good responsibility with the detection accuracy was 14 times higher than that of the sensor using wavelength of 633 nm. Moreover, the penetration depth was around 789.6 nm, which was 3.5 times better than that of the case of 633 nm wavelength. In addition, the sensor with a sensitivity of 93.40/RIU was 1.5 times lower in comparison with the case of using 633 nm. The enhancement in detection accuracy and penetration depth for the sensor using wavelength of 1064 nm will be offered advantages for early detection of bateria with size from 1 µm to 20 µm in the biomedical and food applications.
Tóm tắt
Nghiên cứu trình bày kết quả mô phỏng các đặc tính của cảm biến quang học sử dụng lăng kính dựa trên hiệu ứng cộng hưởng plasmon bề mặt với lớp phủ kim loại Ag và bước sóng ánh sáng 1064 nm. Kết quả nghiên cứu cho thấy cảm biến sử dụng lớp Ag với độ dày 60 nm sẽ cho độ chính xác của phép đo cao hơn 14 lần và độ xuyên sâu (789,6 nm) cao hơn 3,5 lần so với cảm biến sử dụng ánh sáng 633 nm. Độ nhạy của cảm biến này có kết quả đạt được là 93,40/RIU, khá cao cho cảm biến sử dụng một lớp kim loại và thấp hơn 1,5 lần so với cảm biến sử dụng bước sóng 633 nm. Việc tăng cường độ chính xác và độ xuyên sâu của cảm biến sử dụng bước sóng 1064 nm đã mở ra tiềm năng ứng dụng lớn của cảm biến này trong lĩnh vực chẩn đoán sớm, dùng để đo các thực thể có kích thước lớn như vi khuẩn (1-20 µm) trong lĩnh vực y sinh.
Article Details
Tài liệu tham khảo
Altintas, Z., France, B., Ortiz, J. O., & Tothill, I. E., (2016). Computationally modelled receptors for drug monitoring using an optical based biomimetic SPR sensor. Sensors and Actuators B: Chemical, 224, 726-737. https://doi.org/10.1016/j.snb.2015.10.075
Ciesielski, A., Skowronski, L., Trzinski, M., & Szoplik, T. (2017). Controlling the optical parameters of self-assembled silver films with wetting layers and annealing. Applied Surface Science, 421(1B), 349-356. https://doi.org/10.1016/j.apsusc.2017.01.039
Chiang, H. P., Chen, C. W., Wu, J. J., Li, H. L., Lin, T. Y., Sánchez, E. J., & Leung, P. T. (2007). Effects of temperature on the surface plasmon resonance at a metal–semiconductor interface. Thin Solid Films, 515(17), 6953–6961. https://doi.org/10.1016/j.tsf.2007.02.034
Csete, M., Kohazi-Kis, A., Vass, Cs., Sipos, A., Szekeres, G., Deli, M., Osvay, K., & Bor, Zs. (2007). Atomic force microscopical and surface plasmon resonance spectroscopical investigation of sub-micrometer metal gratings generated by UV laser based two beam interference in Au-Ag bimetallic layers. Applied Surface Science, 253(19), 7662-7671. https://doi.org/10.1016/j.apsusc.2007.02.035
Ctyroky, J., Homola J., Lambeck, P. V., Musa S., Hoekstra, H. J. W. M., Harris, R. D., Wilkinson, J. S., Usievich, B., & Lyndin, N. M. (1999). Theory and modeling of optical waveguide senors utilizing surface plasmon resonance. Sensors and Actuators B, 54(1-2), 66-73. https://doi.org/10.1016/S0925-4005(98)00328-1
Dostalek, J., Ctyroky, J., Homola, J., Brynda, E., Skalsky, M., Nekvindova, P., Spirkova, J., Skvor, J., & Schrofel, J. (2001). Surface plasmon resonance biosensor based on integrated optical waveguide. Sensors and Actuators B: Chemical. 76(1-3), 8-12. https://doi.org/10.1016/S0925-4005(01)00559-7
Fauzia, V., Nurlely, Imawan, C., Narayani, N. M. M. S., & Putri, A. E. (2018). Alocalized surface plasmon resonance enhacend dye-based biosensor for formaldehyte detection. Sensors and Actuators B: Chemical 257, 1128-1133. https://doi.org/10.1016/j.snb.2017.11.031
Gupta, B. D., & Sharma Anu,j K. (2005). Sensitivity evaluation of a multi-layered surface plasmon resonance based fiber optic sensor: a theoretical study. Sensors and Actuators B: Chemical. 107(1), 40-46. https://doi.org/10.1016/j.snb.2004.08.030
Homola, J. (1997). On the sensitivity of surface plasmon resonance sensors with spectral interrogration. Sensors and Actuators B: Chemical, 41(1-3), 207–211. https://doi.org/10.1016/S0925-4005(97)80297-3
Iga, M., Seki, A., & Watanabe, K. (2004). Hetero-core structured fiber optic surface plasmon resonance sensor with silver film. Sensors and Actuators B: Chemical, 10(3), 368–372. https://doi.org/10.1016/j.snb.2004.04.007
Maharana, P. K., & Jha R., (2012). Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance. Sensors and Actuators B: Chemical, 169(5), 161-166. https://doi.org/10.1016/j.snb.2012.04.051
Nguyen, T. T., Lee E. C., & Ju, H. (2014). Bimetal coated optical fiber sensors based on surface plasmon resonance induced change in birefringence and intensity. Optics Express, 22(5), 5590-5598. https://doi.org/10.1364/OE.22.005590
Nguyen, T. T., Bea, S. O., Kim, D. M., Yoon, W. J., Park, J. W., An, S. S., & Ju, H. (2015). A regenerative fiber optic sensor using surface plasmon resonance for clinical diagnosis off fibrinogen. International Journal of Biomedicine, 10, 115. doi: 10.2147/IJN.S88963
Otto, A. (1968). Excitation of nonradiative surface plasmon waves in silver by the method frustrated total reflection. Zeitschrift fur Physik, 216, 398-410. https://doi.org/10.1007/BF01391532
Orfanisdis, S. J. (1999). Electromagnetic waves and antennas. Rutgers University, Pp 311-313.
Patnaik, A., & Senthilnathan, K., Jha R. (2015). Graphene based conducting metal oxide coated D-shaped optical fiber SPR sensor. IEEE Photonics Technology Letters, 27(23), 2437-2440, DOI: 10.1109/LPT.2015.2467189.
Rani, M., Shukla, S., Sharma, N. K., & Sajal, V. (2014). Theoritical analysis of surface plasmon resonance based fiber optic sensor using indium nitride. Optik, 125(20), 6026-6031. https://doi.org/10.1016/j.ijleo.2014.06.101.
Saad, Y., Selmi, M., Gazzah, M. H., & Belmabrouk, H. (2018). The effect of physical and geometric parameters on the surface plasmon resonance response of a fiber opitc biosensor: sensitivity analysis and numerical optimization. Sensor Letters, 16(6), 403-409. https://doi.org/10.1166/sl.2018.3970.
Saad, Y., Selmi, M., Gazzah, M. H., & Belmabrouk, H. (2018). Theoritical evaluation of a fiber-optic SPR biosensor based on a gold layer treated with thiol acid. The European Physical Journal Applied Physics, 82(3), 31210. https://doi.org/10.1051/epjap/2018180059.
Saylan, Y., Akgonullu, S., Yavuz, H., Unal, S., & Denizli, A. (2019). Molecularly imprinted polymer based sensors for medical applications. Sensors, 19(6), 1279. https://doi.org/10.3390/s19061279.
Shalabney, A., & Abdulhalim, I., (2010). Electromagnetic field distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors. Sensors and Actuators A: Physical 159(1), 24-32. https://doi.org/10.1016/j.sna.2010.02.005.
Tabassum, R., & Gupta, B. D. (2015). Performance analysis of bimetallic layer with Zinc oxide for SPR-based fiber optic sensor. Journal of Lightwave Technology, 33(22), 4565-4571. https://doi.org/10.1109/JLT.2015.2479631
Tabassum, R., & Gupta, B. D. (2016). SPR based fiber-optic sensor with enhanced electric field intensity and figure of merit using different single and bimetallic configurations. Optics Communications, 367(15), 23-34. https://doi.org/10.1016/j.optcom.2016.01.014.
Yusser, A. Q., Noor, A. S., Arasu, P. T., & Sadrolhosseini, A. R. (2013). Investigation of the performance of an SPR-based optical fiber sensor using finite-difference time domain. Current Applied Physics, 13(7), 1354-1358. https://doi.org/10.1016/j.cap.2013.04.011.
Werner, W. S. M., Glantschnig, K., & Ambrosch-Draxl, C. (2009). Optical constants and inelastic electron-scattering data for 17 elemental metals. Journal of Physical and Chemical Reference Data, 38, 1013-1092. https://doi.org/10.1063/1.3243762.