Giải thức tối tiểu cho đại số steenrod A_3 tại những bậc trong t≤30
Abstract
An important issue in the study of the classification problem with the type homotopy of topological spaces is the identification of the homotopy group, especially the stable homotopy group of spheres. Adams spectral sequence will be converged on the 3-torsion component of the stable homotopy group of spheres π_*^S (S^0 ). The E_2-term of the Adams spectral sequence is cohomology of the mod 3 Steenrod algebra "Ex" "t" _A^(*,*) (F_3,F_3 ). To compute the E_2-term of the Adams spectral sequence, we need to compute "Ex" "t" _A^(*,*) (F_3,F_3 )=H^(*,*) ("Hom" (P_*,F_3 ),δ) for any free A -module resolution of F_3. In this paper, a free resolution P_* for internal degrees t≤30 was constructed.
Tóm tắt
Một vấn đề quan trọng trong nghiên cứu bài toán phân loại kiểu đồng luân của các không gian tôpô là xác định nhóm đồng luân, đặc biệt là nhóm đồng luân ổn định của mặt cầu. Dãy phổ Adams hội tụ về thành phần 3-xoắn của nhóm đồng luân ổn định của mặt cầu π_*^S (S^0 ). Trang E_2 của dãy phổ Adams chính là đối đồng điều của đại số Steenrod "Ex" "t" _A^(*,*) (F_3,F_3 ). Để tính trang E_2 của dãy phổ Adams, ta cần tính "Ex" "t" _A^(*,*) (F_3,F_3 )=H^(*,*) ("Hom" (P_*,F_3 ),δ) cho giải thức A -mô đun tự do bất kỳ của F_3. Trong bài báo này, giải thức tự do〖 P〗_* đối với những bậc trong t≤30 được xây dựng.
Article Details
Tài liệu tham khảo
Adams, J. F. (1958). On the structure and applications of the Steenrod algebra. Commentarii Mathematici Helvetici, 32(1), 180-214. https://doi.org/10.1007/BF02564578
Adem, J. (1952). The Iteration of the Steenrod Squares in Algebraic Topology. Proceedings of the National Academy of Sciences, 38(8), 720–726. https://doi.org/10.1073/pnas.38.8.720
Bousfield, A. K., Curtis, E. B., Kan, D. M., Quillen, D. G., Rector, D. L., & Schlesinger, J. W. (1966). The mod-p lower central series and the Adams spectral sequence. Topology, 5, 331–342. https://doi.org/10.1016/0040-9383(66)90024-3
Bruner, R. R., Hà, L. M., & Hưng, N. H. V. (2005). On the behavior of the algebraic transfer. Transactions of the American Mathematical Society, 357(2), 473–487. https://doi.org/10.1090/S0002-9947-04-03661-X
Bruner, R. R. (2009). An Adams Spectral Sequence Primer. Department of Mathematics, Wayne State University, Detroit MI 48202-3489, USA. https://www.rrb.wayne.edu/papers/adams.pdf
Bruner, R. R., & Rognes, J. (2021). The Adams spectral sequence for topological modular forms. Mathematical Surveys and Monographs, vol. 253, American Mathematical Society, Providence, RI. https://doi.org/10.1090/surv/253
Chen, T. W. (2011). Determination of . Topology and its Applications, 158, 660-689. https://doi.org/10.1016/j.topol.2011.01.002
Chơn, P. H., & Hà, L. M. (2012). On May spectral sequence and the algebraic transfer. Manuscripta mathematica, 138, 141-160. https://doi.org/10.1007/s00229-011-0487-0
Chơn, P. H., & Hà, L. M. (2014). On the May spectral sequence and the algebraic transfer II. Topology and its Applications, 178, 372-383. https://doi.org/10.1016/j.topol.2014.10.013
Lin, W. H., & Mahowald, M. (1998). The Adams spectral sequence for Minami's theorem. Contemporary Mathematics, 220, 143-177. https://doi.org/10.1090/conm/220/03098
Lin, W. H. (2008). and . Topology and its Applications, 155(5), 459–496. https://doi.org/10.1016/j.topol.2007.11.003
May, J. P. (1964). The cohomology of restricted Lie algebras and of Hopf algebras; applications to the Steenrod algebra (doctoral dissertation). Princeton University.
May, J. P. (1966). The cohomology of restricted Lie algebras and of Hopf algebras. Journal of Algebra, 3, 123-146. https://doi.org/10.1016/0021-8693(66)90009-3
May, J. P. (1970). A general algebraic approach to Steenrod operations. In the Steenrod Algebra and its Applications: a conference to celebrate N. E. Steenrod’s Sixtieth Birthday, Battelle Memorial institute, Columbus, Ohio, Lecture Notes in Mathematics, Vol. 168, Springer, Berlin, 153-231. https://doi.org/10.1007/BFb0058524
Milnor, J. (1958). The Steenrod algebra and its dual, Annals of Mathematics, 67, 150-171. https://doi.org/10.2307/1969932
Nassau, C. (2021). Computing a minimal resolution over the Steenrod algebra. Le Matematiche, 76(1), 3–18. https://doi:10.4418/2021.76.1.1
Priddy, S. B. (1970). Koszul resolutions. Transactions of the American Mathematical Society, 152(1), 39-60. https://doi.org/10.1090/S0002-9947-1970-0265437-8
Rognes, J. (2012). The Adams Spectral Sequence. University of Chicago Press. https://www.mn.uio.no/math/personer/vit/rognes/papers/notes.050612.pdf
Rognes, J. (2015). Introduction to the Adams Spectral Sequence. Algbraic Topology III- Mat 9580 – Spring. https://www.uio.no/studier/emner/matnat/math/MAT9580/v15/undervisningsmateriale/adams-sp-seq.010615.pdf
Singer, W. M. (1983). Invariant theory and the Lambda algebra. Transactions of the American Mathematical Society, 280(2), 673–693. https://doi.org/10.1090/S0002-9947-1983-0716844-7
Steenrod, N. E. (1962). Cohomology operations. Lecture by N. E. Steenrod, written and revised by D. B. A. Epstein, Annals of Mathematics Studies, vol.50, Princeton University Press, Princeton New Jersey.
Tangora, M. C. (1970). On the cohomology of the Steenrod algebra. Mathematische Zeitschrift, 116, 18-64. https://doi.org/10.1007/BF01110185
Wang, J. S. P. (1967). On the cohomology of the mod-2 Steenrod algebra and the non-existence of elements of Hopf invariant one. Illinois Journal of Mathematics, 11, 480-490. https://doi.org/10.1215/ijm/1256054570