Phạm Bích Như *

* Tác giả liên hệ (pbnhu@ctu.edu.vn)

Abstract

An important issue in the study of the classification problem with the type homotopy of topological spaces is the identification of the homotopy group, especially the stable homotopy group of spheres. Adams spectral sequence will be converged on the 3-torsion component of the stable homotopy group of spheres π_*^S (S^0 ). The E_2-term of the Adams spectral sequence is cohomology of the mod 3 Steenrod algebra "Ex" "t" _A^(*,*) (F_3,F_3 ). To compute the E_2-term of the Adams spectral sequence, we need to compute "Ex" "t" _A^(*,*) (F_3,F_3 )=H^(*,*) ("Hom" (P_*,F_3 ),δ) for any free A -module resolution of F_3. In this paper, a free resolution P_* for internal degrees t≤30 was constructed.

Keywords: Adams free resolution, Adams spectral sequence, filtration, Steenrod algebra.

Tóm tắt

Một vấn đề quan trọng trong nghiên cứu bài toán phân loại kiểu đồng luân của các không gian tôpô là xác định nhóm đồng luân, đặc biệt là nhóm đồng luân ổn định của mặt cầu. Dãy phổ Adams hội tụ về thành phần 3-xoắn của nhóm đồng luân ổn định của mặt cầu π_*^S (S^0 ). Trang E_2 của dãy phổ Adams chính là đối đồng điều của đại số Steenrod "Ex" "t" _A^(*,*) (F_3,F_3 ). Để tính trang E_2 của dãy phổ Adams, ta cần tính "Ex" "t" _A^(*,*) (F_3,F_3 )=H^(*,*) ("Hom" (P_*,F_3 ),δ) cho giải thức A -mô đun tự do bất kỳ của F_3. Trong bài báo này, giải thức tự do〖 P〗_* đối với những bậc trong t≤30 được xây dựng.

Từ khóa: Dãy phổ Adams, Giải thức Adams tự do, đại số Steenrod, lọc.

Article Details

Tài liệu tham khảo

Adams, J. F. (1958). On the structure and applications of the Steenrod algebra. Commentarii Mathematici Helvetici, 32(1), 180-214. https://doi.org/10.1007/BF02564578

Adem, J. (1952). The Iteration of the Steenrod Squares in Algebraic Topology. Proceedings of the National Academy of Sciences, 38(8), 720–726. https://doi.org/10.1073/pnas.38.8.720

Bousfield, A. K., Curtis, E. B., Kan, D. M., Quillen, D. G., Rector, D. L., & Schlesinger, J. W. (1966). The mod-p lower central series and the Adams spectral sequence. Topology, 5, 331–342. https://doi.org/10.1016/0040-9383(66)90024-3

Bruner, R. R., Hà, L. M., & Hưng, N. H. V. (2005). On the behavior of the algebraic transfer. Transactions of the American Mathematical Society, 357(2), 473–487. https://doi.org/10.1090/S0002-9947-04-03661-X

Bruner, R. R. (2009). An Adams Spectral Sequence Primer. Department of Mathematics, Wayne State University, Detroit MI 48202-3489, USA. https://www.rrb.wayne.edu/papers/adams.pdf

Bruner, R. R., & Rognes, J. (2021). The Adams spectral sequence for topological modular forms. Mathematical Surveys and Monographs, vol. 253, American Mathematical Society, Providence, RI. https://doi.org/10.1090/surv/253

Chen, T. W. (2011). Determination of . Topology and its Applications, 158, 660-689. https://doi.org/10.1016/j.topol.2011.01.002

Chơn, P. H., & Hà, L. M. (2012). On May spectral sequence and the algebraic transfer. Manuscripta mathematica, 138, 141-160. https://doi.org/10.1007/s00229-011-0487-0

Chơn, P. H., & Hà, L. M. (2014). On the May spectral sequence and the algebraic transfer II. Topology and its Applications, 178, 372-383. https://doi.org/10.1016/j.topol.2014.10.013

Lin, W. H., & Mahowald, M. (1998). The Adams spectral sequence for Minami's theorem. Contemporary Mathematics, 220, 143-177. https://doi.org/10.1090/conm/220/03098

Lin, W. H. (2008). and . Topology and its Applications, 155(5), 459–496. https://doi.org/10.1016/j.topol.2007.11.003

May, J. P. (1964). The cohomology of restricted Lie algebras and of Hopf algebras; applications to the Steenrod algebra (doctoral dissertation). Princeton University.

May, J. P. (1966). The cohomology of restricted Lie algebras and of Hopf algebras. Journal of Algebra, 3, 123-146. https://doi.org/10.1016/0021-8693(66)90009-3

May, J. P. (1970). A general algebraic approach to Steenrod operations. In the Steenrod Algebra and its Applications: a conference to celebrate N. E. Steenrod’s Sixtieth Birthday, Battelle Memorial institute, Columbus, Ohio, Lecture Notes in Mathematics, Vol. 168, Springer, Berlin, 153-231. https://doi.org/10.1007/BFb0058524

Milnor, J. (1958). The Steenrod algebra and its dual, Annals of Mathematics, 67, 150-171. https://doi.org/10.2307/1969932

Nassau, C. (2021). Computing a minimal resolution over the Steenrod algebra. Le Matematiche, 76(1), 3–18. https://doi:10.4418/2021.76.1.1

Priddy, S. B. (1970). Koszul resolutions. Transactions of the American Mathematical Society, 152(1), 39-60. https://doi.org/10.1090/S0002-9947-1970-0265437-8

Rognes, J. (2012). The Adams Spectral Sequence. University of Chicago Press. https://www.mn.uio.no/math/personer/vit/rognes/papers/notes.050612.pdf

Rognes, J. (2015). Introduction to the Adams Spectral Sequence. Algbraic Topology III- Mat 9580 – Spring. https://www.uio.no/studier/emner/matnat/math/MAT9580/v15/undervisningsmateriale/adams-sp-seq.010615.pdf

Singer, W. M. (1983). Invariant theory and the Lambda algebra. Transactions of the American Mathematical Society, 280(2), 673–693. https://doi.org/10.1090/S0002-9947-1983-0716844-7

Steenrod, N. E. (1962). Cohomology operations. Lecture by N. E. Steenrod, written and revised by D. B. A. Epstein, Annals of Mathematics Studies, vol.50, Princeton University Press, Princeton New Jersey.

Tangora, M. C. (1970). On the cohomology of the Steenrod algebra. Mathematische Zeitschrift, 116, 18-64. https://doi.org/10.1007/BF01110185

Wang, J. S. P. (1967). On the cohomology of the mod-2 Steenrod algebra and the non-existence of elements of Hopf invariant one. Illinois Journal of Mathematics, 11, 480-490. https://doi.org/10.1215/ijm/1256054570