Chế tạo vật liệu xúc tác nano PtRuCo/C-MWCNTs cho điện cực pin nhiên liệu methanol
Abstract
In this study, ternary platinum-ruthenium-cobalt (PtRuCo) alloy nanoparticles decorated on carbon Vulcan XC-72 and multi-walled carbon nanotubes (C-MWCNTs) composite supports were synthesized by a co-reduction method. The precursors H2PtCl6, RuCl3, CoCl2 and an efficient reduction of NaBH4 agent in ethylene glycol (EG) were used to synthesize the PtRuCo nanoparticles. The catalyst samples were characterized by energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM), and cyclic voltammetry (CV). The results confirms that ternary PtRuCo catalyst provides a methanol oxidation ability 10% higher than binary PtRu catalyst and the resistance to CO poisoning of PtRuCo is twice compared with PtRu. In addition, the methanol oxidation activity and the resistance to CO poisoning of the C-MWCNTs composite support showed 5% and 83% higher than that of the carbon support, respectively.
Tóm tắt
Trong nghiên cứu này, hạt xúc tác nano hợp kim platinum-ruthenium-cobalt (PtRuCo) trên chất nền hỗn hợp carbon Vulcan XC-72 với ống nano carbon đa thành (C-MWCNTs) được tổng hợp bằng phương pháp đồng khử. Hạt nano PtRuCo được tổng hợp từ các tiền chất H2PtCl6, RuCl3, CoCl2, và chất khử là NaBH4 kết hợp ethylene glycol (EG). Các mẫu xúc tác sau khi chế tạo được đánh giá bởi các phương pháp đo phổ tán xạ năng lượng tia X (EDX), nhiễu xạ tia X (XRD), kính hiển vi điện tử truyền qua (TEM), và quét thế vòng tuần hoàn (CV). Các kết quả đo đạc và phân tích cho thấy, chất xúc tác hợp kim ba thành phần PtRuCo cho khả năng oxy hóa methanol cao hơn 10% và khả năng chống ngộ độc CO gấp đôi so với hai thành phần PtRu. Hơn nữa, chất nền hỗn hợp C-MWCNTs cho hoạt tính oxy hóa methanol cao hơn 5% và khả năng kháng ngộ độc CO cao hơn 83% so với nền carbon.
Article Details
Tài liệu tham khảo
TÀI LIỆU THAM KHẢO
Antolini, E. (2003). Formation of carbon-supported PtM alloys for low temperature fuel cells: a review. Materials chemistry and physics, 78(3), 563-573. https://doi.org/10.1016/S0254-0584(02)00389-9
Aricò, A. S., Srinivasan, S., & Antonucci, V. (2001). DMFCs: from fundamental aspects to technology development. Fuel cells, 1(2), 133-161. https://doi.org/10.1002/1615-6854(200107)1:2<133::AID-FUCE133>3.0.CO;2-5
Chen, T. Y., Luo, T. J. M., Yang, Y. W., Wei, Y. C., Wang, K. W., Lin, T. L., Wen, T. C., & Lee, C. H. (2012). Core dominated surface activity of core–shell nanocatalysts on methanol electrooxidation. The Journal of Physical Chemistry C, 116(32), 16969-16978. https://doi.org/10.1021/jp3017419
Jang, J. H., Lee, E., Park, J., Kim, G., Hong, S., & Kwon, Y. U. (2013). Rational syntheses of core-shell Fex@ Pt nanoparticles for the study of electrocatalytic oxygen reduction reaction. Scientific reports, 3(1), 1-8. https://doi.org/10.1038/srep02872
Jin, X., Zeng, C., Yan, W., Zhao, M., Bobba, P., Shi, H., Thapa, P. S., Subramaniam, B., & Chaudhari, R. V. (2017). Lattice distortion induced electronic coupling results in exceptional enhancement in the activity of bimetallic PtMn nanocatalysts. Applied Catalysis A: General, 534, 46-57. https://doi.org/10.1016/j.apcata.2017.01.021
Jung, N., Chung, D. Y., Ryu, J., Yoo, S. J., & Sung, Y. E. (2014). Pt-based nanoarchitecture and catalyst design for fuel cell applications. Nano Today, 9(4), 433-456. https://doi.org/10.1016/j.nantod.2014.06.006
Kaewsai, D., & Hunsom, M. (2018). Comparative study of the ORR activity and stability of Pt and PtM (M= Ni, Co, Cr, Pd) supported on polyaniline/carbon nanotubes in a PEM fuel cell. Nanomaterials, 8(5), 299. https://doi.org/10.3390/nano8050299
Kamali, A. R., Schwandt, C., & Fray, D. J. (2011). Effect of the graphite electrode material on the characteristics of molten salt electrolytically produced carbon nanomaterials. Materials characterization, 62(10), 987-994. https://doi.org/10.1016/j.matchar.2011.06.010
Kumar, A. P., Baek, M. W., Sridhar, C., Kumar, B. P., & Lee, Y. I. (2014). Synthesis and catalytic applications of ruthenium (0) nanoparticles in click chemistry. Bulletin of the Korean Chemical Society, 35(4), 1144-1148. https://doi.org/10.5012/bkcs.2014.35.4.1144
Li, W., Liang, C., Zhou, W., Qiu, J., Zhou, Z., Sun, G., & Xin, Q. (2003). Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. The Journal of Physical Chemistry B, 107(26), 6292-6299. https://doi.org/10.1021/jp022505c
Li, L., & Xing, Y. (2008). Electrochemical durability of carbon nanotubes at 80 oC. Journal of Power Sources, 178(1), 75-79. https://doi.org/10.1016/j.jpowsour.2007.12.002
Li, H., Pan, Y., Zhang, D., Han, Y., Wang, Z., Qin, Y., ... & Wang, L. (2020). Surface oxygen-mediated ultrathin PtRuM (Ni, Fe, and Co) nanowires boosting methanol oxidation reaction. Journal of Materials Chemistry A, 8(5), 2323-2330. https://doi.org/10.1039/C9TA11745H
Lu, L., Chen, S., Thota, S., Wang, X., Wang, Y., Zou, S., Fan, J., & Zhao, J. (2017). Composition controllable synthesis of PtCu nanodendrites with efficient electrocatalytic activity for methanol oxidation induced by high index surface and electronic interaction. The Journal of Physical Chemistry C, 121(36), 19796-19806. https://doi.org/10.1021/acs.jpcc.7b05629
Luo, Y., & Alonso-Vante, N. (2015). The effect of support on advanced Pt-based cathodes towards the oxygen reduction reaction. State of the art. Electrochimica Acta, 179, 108-118. https://doi.org/10.1016/j.electacta.2015.04.098
Ren, X., Lv, Q., Liu, L., Liu, B., Wang, Y., Liu, A., & Wu, G. (2020). Current progress of Pt and Pt-based electrocatalysts used for fuel cells. Sustainable Energy & Fuels, 4(1), 15-30. https://doi.org/10.1039/C9SE00460B
Shah, M. A. (2012). Growth of uniform nanoparticles of platinum by an economical approach at relatively low temperature. Scientia Iranica, 19(3), 964-966. https://doi.org/10.1016/j.scient.2012.02.027
Suh, D. J., Kwak, C., Kim, J. H., Kwon, S. M., & Park, T. J. (2005). Removal of carbon monoxide from hydrogen-rich fuels by selective low-temperature oxidation over base metal added platinum catalysts. Journal of power sources, 142(1-2), 70-74. https://doi.org/10.1016/j.jpowsour.2004.09.012
Takasu, Y., Itaya, H., Iwazaki, T., Miyoshi, R., Ohnuma, T., Sugimoto, W., & Murakami, Y. (2001). Size effects of ultrafine Pt–Ru particles on the electrocatalytic oxidation of methanol. Chemical Communications, 4, 341-342. https://doi.org/10.1039/B008821H
Tian, Z. Q., Jiang, S. P., Liang, Y. M., & Shen, P. K. (2006). Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications. The Journal of Physical Chemistry B, 110(11), 5343-5350. https://doi.org/10.1021/jp056401o
Zhang, C., Shen, X., Pan, Y., & Peng, Z. (2017). A review of Pt-based electrocatalysts for oxygen reduction reaction. Frontiers in Energy, 11, 268-285. https://doi.org/10.1007/s11708-017-0466-6