Tăng Huyền Cơ Trần Thanh Mến *

* Tác giả liên hệ (ttmen@ctu.edu.vn)

Abstract

In this study, Drosophila melanogaster was used to evaluate the toxicity of ethanol extract from lantana (Lantana camara L.). Preliminary chemical composition screening determined the presence of alkaloids, flavonoids, saponins, phenolics, tannins, terpenoids, cardiac glycosides, and steroids-triterpenoids in the plant extract. The amount of polyphenols and flavonoids were determined with the values of 123±2.30 mg GAE/g extract and 309±2.17 mg QE/g extract, respectively. Lantana extract has the potential of causing toxicity on Drosophila melanogaster at different concentrations. At 250 mg/mL concentration, the mortality rate of Drosophila melanogaster was the highest at 84.4±8.39%, and the LD50 value was determined 140 mg/mL. At concentration of 20 mg/mL the effects of lantana extract on the growth and development of fruit flies was demonstrated through a lower total number of formed pupae compared with the control treatment, the mortality rate of 55.9±2.09% at the pupal stage as well as the decrease in the ability to store energy components including carbohydrates, lipids, and proteins. In addition, the study also noted that lantana extract could inhibit the activity of enzymes belonging to the esterase and phosphatase groups. It is concluded that lantana is a capable plant of synthesizing secondary compounds which are toxic to fruit flies.

Keywords: Drosophila melanogaster, esterase, phosphatase, Lantana camara L., toxicity

Tóm tắt

Nghiên cứu này sử dụng ruồi giấm Drosophila melanogaster để đánh giá độc tính của cao chiết ethanol trâm ổi. Kết quả định tính cho thấy trâm ổi có sự hiện diện alkaloids, flavonoids, saponins, phenolics, tanins, terpenoids, cardiac glycosides và steroids-triterpenoids. Polyphenols và flavonoids tổng được xác định lần lượt là 123±2,30 mg GAE/g và 309±2,17 mg QE/g cao chiết. Cao chiết trâm ổi có khả năng gây độc cho ruồi giấm ở các nồng độ khác nhau. Ở nồng độ 250 mg/mL, trâm ổi gây chết 84,4±8,39% và nồng độ gây chết 50% (LD50) được xác định là 140 mg/mL. Ở nồng độ 20 mg/mL, trâm ổi ảnh hưởng đến sự sinh trưởng và phát triển của ruồi giấm thể hiện qua số nhộng hình thành thấp hơn so với đối chứng, tỉ lệ chết ở giai đoạn nhộng 55,9±2,09%, khả năng tích trữ năng lượng như carbohydrate, lipid và protein giảm. Nghiên cứu còn ghi nhận trâm ổi có khả năng ức chế hoạt tính của các enzyme thuộc nhóm esterase và phosphatase. Từ đó cho thấy trâm ổi là thực vật có khả năng tổng hợp các hợp chất thứ cấp gây độc cho ruồi giấm.

Từ khóa: Drosophila melanogaster, esterase, hoạt tính gây độc, phosphatase, trâm ổi

Article Details

Tài liệu tham khảo

Hộ, P. H. (1999). Cây cỏ Việt Nam tập III. Thành phố Hồ Chí Minh. Nhà xuất bản Trẻ.

Khánh, T. C., & Hải P (2004). Cây độc ở Việt Nam. NXB Y học Hà Nội.

Mến, T. T., Trang, D. T. X., Yến, N. Đ. H., Thư, N. P. A., & Nguyên, H. T. K. (2019). Xây dựng mô hình ruồi giấm (Drosophila melanogaster) để nghiên cứu dược liệu có hoạt tính kháng oxy hóa. TNU Journal of Science and Technology, 202(09), 165-171.

Abdelkhalek, A., Salem, M. Z., Kordy, A. M., Salem, A. Z., & Behiry, S. I. (2020). Antiviral, antifungal, and insecticidal activities of Eucalyptus bark extract: HPLC analysis of polyphenolic compounds. Microbial Pathogenesis147, 104383. https://doi.org/10.1016/j.micpath.2020.104383

Ambika, S. R., Poornima, S., Palaniraj, R., Sati, S. C., & Narwal, S. S. (2003). Allelopathic plants. 10. Lantana camara L. Allelopathy Journal12(2), 147-161.

Aritonang, H. F., Koleangan, H., & Wuntu, A. D. (2019). Synthesis of silver nanoparticles using aqueous extract of medicinal plants’(Impatiens balsamina and Lantana camara) fresh leaves and analysis of antimicrobial activity. International Journal of Microbiology2019. https://doi.org/10.1155/2019/8642303

Ayalew, A. A. (2020). Insecticidal activity of Lantana camara extract oil on controlling maize grain weevils. Toxicology Research and Application4, 1-10. https://doi.org/10.1177/2397847320906491

Bagu, G. D., Omale, S., Iorjiim, W. M., Uguru, M. O., & Gyang, S. S. (2020). Determination of LD50, fecundity and locomotor effects of methanol root extract of Ximenia americana Linn, in Drosophila melanogasterAsian Journal of Biochemistry, Genetics and Molecular Biology, 1-9. https://doi.org/10.9734/ajbgmb/2020/v5i230123

Bordoloi, K., Bhagawati, B., Baruah, A. M., Neog, P. P., & Kurulkar, U. (2021). Biochemical mechanism of Lantana camara leaf extracts in the management of Meloidogyne incognita on tomato. Journal of Pharmacognosy and Phytochemistry, 10(1), 2828-2834. https://doi.org/10.22271/phyto.2021.v10.i1an.13789

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3

Cashman, J. R., Perotti, B. Y., Berkman, C. E., & Lin, J. (1996). Pharmacokinetics and molecular detoxication. Environmental health perspectives104(suppl 1), 23-40. https://doi.org/10.1289/ehp.96104s123

Chowański, S., Chudzińska, E., Lelario, F., Ventrella, E., Marciniak, P., Miądowicz-Kobielska, M., Spochacza, M., SzymczakaL, M., Scranoe, L. Sabino, B. S. A., & Adamski, Z. (2018). Insecticidal properties of Solanum nigrum and Armoracia rusticana extracts on reproduction and development of Drosophila melanogasterEcotoxicology and environmental safety162, 454-463. https://doi.org/10.1016/j.ecoenv.2018.07.030

Galati, G., & O'brien, P. J. (2004). Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radical Biology and Medicine37(3), 287-303. https://doi.org/10.1016/j.freeradbiomed.2004.04.034

Ghisalberti, E. L. (2000). Lantana camara L. (verbenaceae). Fitoterapia71(5), 467-486. https://doi.org/10.1016/S0367-326X(00)00202-1

Jiang, H., Xu, W., & Chen, Q. (2020). Determination of tea polyphenols in green tea by homemade color sensitive sensor combined with multivariate analysis. Food chemistry319, 126584. https://doi.org/10.1016/j.foodchem.2020.126584

Jiang, X., Hansen, H. C. B., Strobel, B. W., & Cedergreen, N. (2018). What is the aquatic toxicity of saponin-rich plant extracts used as biopesticides?. Environmental Pollution, 236, 416-424. https://doi.org/10.1016/j.envpol.2018.01.058

Kaida, R., Hayashi, R. T., & Kaneko, T. S. (2008). Purple acid phosphatase in the walls of tobacco cells. Phytochemistry, 69, 2546-2551. https://doi.org/10.1016/j.phytochem.2008.07.008

Katembo, N., Witkowski, E. T., Simelane, D. O., Urban, A. J., & Byrne, M. J. (2020). Impact of biocontrol agents on Lantana camara in an inland area of South Africa. BioControl65(2), 143-154. https://doi.org/10.1007/s10526-019-09991-9

Kissoum, N., Bensafi-Gheraibia, H., Hamida, Z. C., & Soltani, N. (2020). Evaluation of the pesticide Oberon on a model organism Drosophila melanogaster via topical toxicity test on biochemical and reproductive parameters. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology228, 108666. https://doi.org/10.1016/j.cbpc.2019.108666

Lallès, J. P. (2019). Recent advances in intestinal alkaline phosphatase, inflammation, and nutrition. Nutrition Reviews, 77(10), 710–724. https://doi.org/10.1093/nutrit/nuz015

Li, A. N., Li, S., Zhang, Y. J., Xu, X. R., Chen, Y. M., & Li, H. B. (2014). Resources and biological activities of natural polyphenols. Nutrients, 6(12), 6020-6047. https://doi.org/10.3390/nu6126020

Masson, P., & Lockridge, O. (2010). Butyrylcholinesterase for protection from organophosphorus poisons: catalytic complexities and hysteretic behavior. Archives of Biochemistry and Biophysics494(2), 107-120. https://doi.org/10.1016/j.abb.2009.12.005

Meisyara, D., Krishanti, N. P. R. A., Zulfitri, A., Lestari, A. S., Tarmadi, D., Himmi, S. K., Zulfiana, D., Fajar, A., Yusuf, S. and Ismayati, M. (2019, November). Biological activity of local plant extracts from Toba Region as insecticide. In IOP Conference Series: Earth and Environmental Science, 374(1), 012006. https://doi.org/10.1088/1755-1315/374/1/012006

Melanie, M., Hermawan, W., Kasmara, H., Kholifa, A. H., Rustama, M. M., & Panatarani, C. (2020, February). Antifeedant properties of fractionation Lantana camara leaf extract on cabbage caterpillars (Crocidolomia pavonana fabricius) larvae. In IOP Conference Series: Earth and Environmental Science, 457(1), 012047. IOP Publishing. https://doi.org/10.1088/1755-1315/457/1/012047

Mello, F. B., Jacobus, D., Carvalho, K., & Mello, J. R. (2005). Effects of Lantana camara (Verbenaceae) on general reproductive performance and teratology in rats. Toxicon, 45(4), 459-466. https://doi.org/10.1016/j.toxicon.2004.12.004

Nasir, N., Dharma, A., Efdi, M., Yuhendra, & Eliesti, F. (2013). Natural product of wild Zingiberaceae Elettariopsis slahmong: biopesticide to control the vector of banana blood disease bacterium in West Sumatera, Indonesia. Commun Agric Appl Biol Sci, 78(3), 497-505.

Naz, R., & Bano, A. (2013). Phytochemical screening, antioxidants and antimicrobial potential of Lantana camara in different solvents. Asian Pacific Journal of Tropical Disease3(6), 480-486. https://doi.org/10.1016/S2222-1808(13)60104-8

Neiselsen, S. S. (2010). Food Analisis Laboratory Manual. Springer New York Dordrecht Heidelberg London.

Nguyen, T. P., Nguyen, K. C., Nguyen, V. H., Nguyen, L. H. H., & Nguyen, T. P. (2019). Bioefficacy of extracts from lantana camara L. against Spodoptera exigua. The Scientific Journal of Tra Vinh University1(3), 26-32. https://doi.org/10.35382/18594816.1.40.2020.618

Nowak, Z., Konieczna, M., Saracyn, M. and Wańkowicz, Z. (2008). Winianooporna kwaśna fosfataza--TRACP-5b jako nowoczesny marker resorpcji kości [Tartrate resistant acid phosphatase--TRACP-5b as a modern bone resorption marker]. Polski Merkuriusz Lekarski: Organ Polskiego Towarzystwa Lekarskiego, 24(142), 351-354.

Ohadoma, S. C., Akuodor, G. C., Amazu, L. U., & Michael, H. U. (2020). Quantitative estimation of total phenolic and total flavonoid contents of ethylacetate fraction of Chikadoma as a bactericidal agent. Asian J Sci. & Tech.11(6), 11012-11014.

Olmos, E., & Hellin, E. (1997). Cytochemical localization of ATPase plasma membrane and acid phosphatase by cerium-based method in a salt-adapted cell line of Pisum sativumJournal of Experimental Botany48(8), 1529-1535. https://doi.org/10.1093/jxb/48.8.1529

Parkash, R., & Aggarwal, D. D. (2012). Trade-off of energy metabolites as well as body color phenotypes for starvation and desiccation resistance in montane populations of Drosophila melanogasterComparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology161(2), 102-113. https://doi.org/10.1016/j.cbpa.2011.09.010

Pour, B. M., & Sasidharan, S. (2011). In vivo toxicity study of Lantana camaraAsian Pacific Journal of Tropical Biomedicine1(3), 230-232. https://doi.org/10.1016/S2221-1691(11)60033-6

Quijano, M., Riera-Ruíz, C., Barragán, A., Miranda, M., Orellana, T., & Manzano, P. (2014). Molluscicidal activity of the aqueous extracts from Solanum mammosum L., Sapindus saponaria L. and Jatropha curcas L. against Pomacea canaliculataEmirates Journal of Food and Agriculture, 871-877. https://doi.org/10.9755/ejfa.v26i10.18804

Reed, L. J., & Muench, H. (1938). A simple method of estimating fifty per cent endpoints. American Journal of Epidemiology27(3), 493-497. https://doi.org/10.1093/oxfordjournals.aje.a118408

Riaz, B., Zahoor, M. K., Zahoor, M. A., Majeed, H. N., Javed, I., Ahmad, A., Jabeen, F., Zulhussnain, M., & Sultana, K. (2018). Toxicity, Phytochemical Composition, and Enzyme Inhibitory Activities of Some Indigenous Weed Plant Extracts in Fruit Fly, Drosophila melanogasterEvidence-based Complementary and Alternative Medicine : eCAM2018, 2325659. https://doi.org/10.1155/2018/2325659.

Satoh, T., & Hosokawa, M. (1998). The mammalian carboxylesterases: from molecules to functions. Annual Review of Pharmacology and Toxicology38(1), 257-288. https://doi.org/10.1146/annurev.pharmtox.38.1.257

Sen, S., & Chakraborty, R. (2010). Pharmacognostic and anti-hyperglycemic evaluation of Lantana camara (L.) var. aculeate leaves in alloxan-induced hyperglycemic rats. Int J Res Pharm Sci, 1(3), 247-252.

Sousa, E. O., Miranda, C. M., Nobre, C. B., Boligon, A. A., Athayde, M. L., & Costa, J. G. (2015). Phytochemical analysis and antioxidant activities of Lantana camara and Lantana montevidensis extracts. Industrial Crops and Products70, 7-15. https://doi.org/10.1016/j.indcrop.2015.03.010

Tsegay, Z. T., & Gebremedhin, K. M. (2019). Physicochemical and sensory properties of wine produced from blended Cactus Pear (Opuntia ficus-indica) and Lantana camara (L. camara) Fruits. Journal of Food Quality2019. https://doi.org/10.1155/2019/6834946

Usta, A., Güney, İ., Öztürk, M., Selvi, E. K., & Mustafa, M. (2020). Toxicological and behavioural potency of different plant extracts on Aedes albopictus (Diptera: Culicidae) and their qualitative phytochemical analysis. International Journal of Mosquito Research7(5, Part A), 12-18. https://doi.org/10.22271/23487941.2020.v7.i5a.473

Valéria, S. de A. P., F., Felipe da Silva, G., Echeverria Macedo, G., Raquel Muller, K., Kemmerich Martins, I., Lausmann Ternes, A. P., ... & Posser, T. (2014). Phytochemical constituents and toxicity of Duguetia furfuracea hydroalcoholic extract in Drosophila melanogasterEvidence-Based Complementary and Alternative Medicine2014. https://doi.org/10.1155/2014/838101

Zaki, A. A., Shaaban, M. I., Hashish, N. E., Amer, M. A., & Lahloub, M. F. (2013). Assessment of anti-quorum sensing activity for some ornamental and medicinal plants native to Egypt. Scientia Pharmaceutica81(1), 251-258. https://doi.org/10.3797/scipharm.1204-26