Nghiên cứu hoạt tính gây độc của cao chiết ethanol từ trâm ổi (Lantana camara L.) trên ruồi giấm (Drosophila melanogaster)
Abstract
In this study, Drosophila melanogaster was used to evaluate the toxicity of ethanol extract from lantana (Lantana camara L.). Preliminary chemical composition screening determined the presence of alkaloids, flavonoids, saponins, phenolics, tannins, terpenoids, cardiac glycosides, and steroids-triterpenoids in the plant extract. The amount of polyphenols and flavonoids were determined with the values of 123±2.30 mg GAE/g extract and 309±2.17 mg QE/g extract, respectively. Lantana extract has the potential of causing toxicity on Drosophila melanogaster at different concentrations. At 250 mg/mL concentration, the mortality rate of Drosophila melanogaster was the highest at 84.4±8.39%, and the LD50 value was determined 140 mg/mL. At concentration of 20 mg/mL the effects of lantana extract on the growth and development of fruit flies was demonstrated through a lower total number of formed pupae compared with the control treatment, the mortality rate of 55.9±2.09% at the pupal stage as well as the decrease in the ability to store energy components including carbohydrates, lipids, and proteins. In addition, the study also noted that lantana extract could inhibit the activity of enzymes belonging to the esterase and phosphatase groups. It is concluded that lantana is a capable plant of synthesizing secondary compounds which are toxic to fruit flies.
Tóm tắt
Nghiên cứu này sử dụng ruồi giấm Drosophila melanogaster để đánh giá độc tính của cao chiết ethanol trâm ổi. Kết quả định tính cho thấy trâm ổi có sự hiện diện alkaloids, flavonoids, saponins, phenolics, tanins, terpenoids, cardiac glycosides và steroids-triterpenoids. Polyphenols và flavonoids tổng được xác định lần lượt là 123±2,30 mg GAE/g và 309±2,17 mg QE/g cao chiết. Cao chiết trâm ổi có khả năng gây độc cho ruồi giấm ở các nồng độ khác nhau. Ở nồng độ 250 mg/mL, trâm ổi gây chết 84,4±8,39% và nồng độ gây chết 50% (LD50) được xác định là 140 mg/mL. Ở nồng độ 20 mg/mL, trâm ổi ảnh hưởng đến sự sinh trưởng và phát triển của ruồi giấm thể hiện qua số nhộng hình thành thấp hơn so với đối chứng, tỉ lệ chết ở giai đoạn nhộng 55,9±2,09%, khả năng tích trữ năng lượng như carbohydrate, lipid và protein giảm. Nghiên cứu còn ghi nhận trâm ổi có khả năng ức chế hoạt tính của các enzyme thuộc nhóm esterase và phosphatase. Từ đó cho thấy trâm ổi là thực vật có khả năng tổng hợp các hợp chất thứ cấp gây độc cho ruồi giấm.
Article Details
Tài liệu tham khảo
Hộ, P. H. (1999). Cây cỏ Việt Nam tập III. Thành phố Hồ Chí Minh. Nhà xuất bản Trẻ.
Khánh, T. C., & Hải P (2004). Cây độc ở Việt Nam. NXB Y học Hà Nội.
Mến, T. T., Trang, D. T. X., Yến, N. Đ. H., Thư, N. P. A., & Nguyên, H. T. K. (2019). Xây dựng mô hình ruồi giấm (Drosophila melanogaster) để nghiên cứu dược liệu có hoạt tính kháng oxy hóa. TNU Journal of Science and Technology, 202(09), 165-171.
Abdelkhalek, A., Salem, M. Z., Kordy, A. M., Salem, A. Z., & Behiry, S. I. (2020). Antiviral, antifungal, and insecticidal activities of Eucalyptus bark extract: HPLC analysis of polyphenolic compounds. Microbial Pathogenesis, 147, 104383. https://doi.org/10.1016/j.micpath.2020.104383
Ambika, S. R., Poornima, S., Palaniraj, R., Sati, S. C., & Narwal, S. S. (2003). Allelopathic plants. 10. Lantana camara L. Allelopathy Journal, 12(2), 147-161.
Aritonang, H. F., Koleangan, H., & Wuntu, A. D. (2019). Synthesis of silver nanoparticles using aqueous extract of medicinal plants’(Impatiens balsamina and Lantana camara) fresh leaves and analysis of antimicrobial activity. International Journal of Microbiology, 2019. https://doi.org/10.1155/2019/8642303
Ayalew, A. A. (2020). Insecticidal activity of Lantana camara extract oil on controlling maize grain weevils. Toxicology Research and Application, 4, 1-10. https://doi.org/10.1177/2397847320906491
Bagu, G. D., Omale, S., Iorjiim, W. M., Uguru, M. O., & Gyang, S. S. (2020). Determination of LD50, fecundity and locomotor effects of methanol root extract of Ximenia americana Linn, in Drosophila melanogaster. Asian Journal of Biochemistry, Genetics and Molecular Biology, 1-9. https://doi.org/10.9734/ajbgmb/2020/v5i230123
Bordoloi, K., Bhagawati, B., Baruah, A. M., Neog, P. P., & Kurulkar, U. (2021). Biochemical mechanism of Lantana camara leaf extracts in the management of Meloidogyne incognita on tomato. Journal of Pharmacognosy and Phytochemistry, 10(1), 2828-2834. https://doi.org/10.22271/phyto.2021.v10.i1an.13789
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Cashman, J. R., Perotti, B. Y., Berkman, C. E., & Lin, J. (1996). Pharmacokinetics and molecular detoxication. Environmental health perspectives, 104(suppl 1), 23-40. https://doi.org/10.1289/ehp.96104s123
Chowański, S., Chudzińska, E., Lelario, F., Ventrella, E., Marciniak, P., Miądowicz-Kobielska, M., Spochacza, M., SzymczakaL, M., Scranoe, L. Sabino, B. S. A., & Adamski, Z. (2018). Insecticidal properties of Solanum nigrum and Armoracia rusticana extracts on reproduction and development of Drosophila melanogaster. Ecotoxicology and environmental safety, 162, 454-463. https://doi.org/10.1016/j.ecoenv.2018.07.030
Galati, G., & O'brien, P. J. (2004). Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radical Biology and Medicine, 37(3), 287-303. https://doi.org/10.1016/j.freeradbiomed.2004.04.034
Ghisalberti, E. L. (2000). Lantana camara L. (verbenaceae). Fitoterapia, 71(5), 467-486. https://doi.org/10.1016/S0367-326X(00)00202-1
Jiang, H., Xu, W., & Chen, Q. (2020). Determination of tea polyphenols in green tea by homemade color sensitive sensor combined with multivariate analysis. Food chemistry, 319, 126584. https://doi.org/10.1016/j.foodchem.2020.126584
Jiang, X., Hansen, H. C. B., Strobel, B. W., & Cedergreen, N. (2018). What is the aquatic toxicity of saponin-rich plant extracts used as biopesticides?. Environmental Pollution, 236, 416-424. https://doi.org/10.1016/j.envpol.2018.01.058
Kaida, R., Hayashi, R. T., & Kaneko, T. S. (2008). Purple acid phosphatase in the walls of tobacco cells. Phytochemistry, 69, 2546-2551. https://doi.org/10.1016/j.phytochem.2008.07.008
Katembo, N., Witkowski, E. T., Simelane, D. O., Urban, A. J., & Byrne, M. J. (2020). Impact of biocontrol agents on Lantana camara in an inland area of South Africa. BioControl, 65(2), 143-154. https://doi.org/10.1007/s10526-019-09991-9
Kissoum, N., Bensafi-Gheraibia, H., Hamida, Z. C., & Soltani, N. (2020). Evaluation of the pesticide Oberon on a model organism Drosophila melanogaster via topical toxicity test on biochemical and reproductive parameters. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 228, 108666. https://doi.org/10.1016/j.cbpc.2019.108666
Lallès, J. P. (2019). Recent advances in intestinal alkaline phosphatase, inflammation, and nutrition. Nutrition Reviews, 77(10), 710–724. https://doi.org/10.1093/nutrit/nuz015
Li, A. N., Li, S., Zhang, Y. J., Xu, X. R., Chen, Y. M., & Li, H. B. (2014). Resources and biological activities of natural polyphenols. Nutrients, 6(12), 6020-6047. https://doi.org/10.3390/nu6126020
Masson, P., & Lockridge, O. (2010). Butyrylcholinesterase for protection from organophosphorus poisons: catalytic complexities and hysteretic behavior. Archives of Biochemistry and Biophysics, 494(2), 107-120. https://doi.org/10.1016/j.abb.2009.12.005
Meisyara, D., Krishanti, N. P. R. A., Zulfitri, A., Lestari, A. S., Tarmadi, D., Himmi, S. K., Zulfiana, D., Fajar, A., Yusuf, S. and Ismayati, M. (2019, November). Biological activity of local plant extracts from Toba Region as insecticide. In IOP Conference Series: Earth and Environmental Science, 374(1), 012006. https://doi.org/10.1088/1755-1315/374/1/012006
Melanie, M., Hermawan, W., Kasmara, H., Kholifa, A. H., Rustama, M. M., & Panatarani, C. (2020, February). Antifeedant properties of fractionation Lantana camara leaf extract on cabbage caterpillars (Crocidolomia pavonana fabricius) larvae. In IOP Conference Series: Earth and Environmental Science, 457(1), 012047. IOP Publishing. https://doi.org/10.1088/1755-1315/457/1/012047
Mello, F. B., Jacobus, D., Carvalho, K., & Mello, J. R. (2005). Effects of Lantana camara (Verbenaceae) on general reproductive performance and teratology in rats. Toxicon, 45(4), 459-466. https://doi.org/10.1016/j.toxicon.2004.12.004
Nasir, N., Dharma, A., Efdi, M., Yuhendra, & Eliesti, F. (2013). Natural product of wild Zingiberaceae Elettariopsis slahmong: biopesticide to control the vector of banana blood disease bacterium in West Sumatera, Indonesia. Commun Agric Appl Biol Sci, 78(3), 497-505.
Naz, R., & Bano, A. (2013). Phytochemical screening, antioxidants and antimicrobial potential of Lantana camara in different solvents. Asian Pacific Journal of Tropical Disease, 3(6), 480-486. https://doi.org/10.1016/S2222-1808(13)60104-8
Neiselsen, S. S. (2010). Food Analisis Laboratory Manual. Springer New York Dordrecht Heidelberg London.
Nguyen, T. P., Nguyen, K. C., Nguyen, V. H., Nguyen, L. H. H., & Nguyen, T. P. (2019). Bioefficacy of extracts from lantana camara L. against Spodoptera exigua. The Scientific Journal of Tra Vinh University, 1(3), 26-32. https://doi.org/10.35382/18594816.1.40.2020.618
Nowak, Z., Konieczna, M., Saracyn, M. and Wańkowicz, Z. (2008). Winianooporna kwaśna fosfataza--TRACP-5b jako nowoczesny marker resorpcji kości [Tartrate resistant acid phosphatase--TRACP-5b as a modern bone resorption marker]. Polski Merkuriusz Lekarski: Organ Polskiego Towarzystwa Lekarskiego, 24(142), 351-354.
Ohadoma, S. C., Akuodor, G. C., Amazu, L. U., & Michael, H. U. (2020). Quantitative estimation of total phenolic and total flavonoid contents of ethylacetate fraction of Chikadoma as a bactericidal agent. Asian J Sci. & Tech., 11(6), 11012-11014.
Olmos, E., & Hellin, E. (1997). Cytochemical localization of ATPase plasma membrane and acid phosphatase by cerium-based method in a salt-adapted cell line of Pisum sativum. Journal of Experimental Botany, 48(8), 1529-1535. https://doi.org/10.1093/jxb/48.8.1529
Parkash, R., & Aggarwal, D. D. (2012). Trade-off of energy metabolites as well as body color phenotypes for starvation and desiccation resistance in montane populations of Drosophila melanogaster. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 161(2), 102-113. https://doi.org/10.1016/j.cbpa.2011.09.010
Pour, B. M., & Sasidharan, S. (2011). In vivo toxicity study of Lantana camara. Asian Pacific Journal of Tropical Biomedicine, 1(3), 230-232. https://doi.org/10.1016/S2221-1691(11)60033-6
Quijano, M., Riera-Ruíz, C., Barragán, A., Miranda, M., Orellana, T., & Manzano, P. (2014). Molluscicidal activity of the aqueous extracts from Solanum mammosum L., Sapindus saponaria L. and Jatropha curcas L. against Pomacea canaliculata. Emirates Journal of Food and Agriculture, 871-877. https://doi.org/10.9755/ejfa.v26i10.18804
Reed, L. J., & Muench, H. (1938). A simple method of estimating fifty per cent endpoints. American Journal of Epidemiology, 27(3), 493-497. https://doi.org/10.1093/oxfordjournals.aje.a118408
Riaz, B., Zahoor, M. K., Zahoor, M. A., Majeed, H. N., Javed, I., Ahmad, A., Jabeen, F., Zulhussnain, M., & Sultana, K. (2018). Toxicity, Phytochemical Composition, and Enzyme Inhibitory Activities of Some Indigenous Weed Plant Extracts in Fruit Fly, Drosophila melanogaster. Evidence-based Complementary and Alternative Medicine : eCAM, 2018, 2325659. https://doi.org/10.1155/2018/2325659.
Satoh, T., & Hosokawa, M. (1998). The mammalian carboxylesterases: from molecules to functions. Annual Review of Pharmacology and Toxicology, 38(1), 257-288. https://doi.org/10.1146/annurev.pharmtox.38.1.257
Sen, S., & Chakraborty, R. (2010). Pharmacognostic and anti-hyperglycemic evaluation of Lantana camara (L.) var. aculeate leaves in alloxan-induced hyperglycemic rats. Int J Res Pharm Sci, 1(3), 247-252.
Sousa, E. O., Miranda, C. M., Nobre, C. B., Boligon, A. A., Athayde, M. L., & Costa, J. G. (2015). Phytochemical analysis and antioxidant activities of Lantana camara and Lantana montevidensis extracts. Industrial Crops and Products, 70, 7-15. https://doi.org/10.1016/j.indcrop.2015.03.010
Tsegay, Z. T., & Gebremedhin, K. M. (2019). Physicochemical and sensory properties of wine produced from blended Cactus Pear (Opuntia ficus-indica) and Lantana camara (L. camara) Fruits. Journal of Food Quality, 2019. https://doi.org/10.1155/2019/6834946
Usta, A., Güney, İ., Öztürk, M., Selvi, E. K., & Mustafa, M. (2020). Toxicological and behavioural potency of different plant extracts on Aedes albopictus (Diptera: Culicidae) and their qualitative phytochemical analysis. International Journal of Mosquito Research, 7(5, Part A), 12-18. https://doi.org/10.22271/23487941.2020.v7.i5a.473
Valéria, S. de A. P., F., Felipe da Silva, G., Echeverria Macedo, G., Raquel Muller, K., Kemmerich Martins, I., Lausmann Ternes, A. P., ... & Posser, T. (2014). Phytochemical constituents and toxicity of Duguetia furfuracea hydroalcoholic extract in Drosophila melanogaster. Evidence-Based Complementary and Alternative Medicine, 2014. https://doi.org/10.1155/2014/838101
Zaki, A. A., Shaaban, M. I., Hashish, N. E., Amer, M. A., & Lahloub, M. F. (2013). Assessment of anti-quorum sensing activity for some ornamental and medicinal plants native to Egypt. Scientia Pharmaceutica, 81(1), 251-258. https://doi.org/10.3797/scipharm.1204-26