Đánh giá khả năng loại bỏ methylene blue của vật liệu hấp phụ được điều chế từ mụn dừa bằng phương pháp Hummers cải tiến
Abstract
This study is to evaluate the removal ability of methylene blue dyes in water by utilizing adsorbent derived from coir pith with the modified Hummers method. The effective parameters of the synthesized process were investigated to find the optimum conditions. The chemical and physical properties of the adsorbent were characterized by thermogravimetric analysis, the specific surface area Brunauer–Emmett–Teller technique. The specific surface area of the adsorbent was 9.3 m2/g and its porous diameter was 6.96 nm. Adsorption yield of 99.82± 0.10% at MB initial concentration of 500 mg/L, pH 8, and temperature of 30 with contact time of 40 min proved the highly efficient adsorption ability of the adsorbent. The adsorption was well fitted to the Langmuir isotherm model at concentration of 10-50 mg/L while the Freundlich isotherm model was good at concentration of 50-500 mg/L.
Tóm tắt
Nghiên cứu được thực hiện nhằm đánh giá khả năng loại bỏ thuốc nhuộm methylene blue trong nước bằng vật liệu hấp phụ (VLHP) từ mụn dừa được chế tạo bằng phương pháp Hummers cải tiến. Các yếu tố ảnh hưởng đến quá trình tổng hợp vật liệu được tiến hành khảo sát nhằm tìm ra các điều kiện tối ưu. VLHP từ mụn dừa được phân tích hóa lý bằng phân tích nhiệt trọng lượng, diện tích bề mặt riêng. Diện tích bề mặt riêng của vật liệu là 9,3 m2/g và đường kính mao quản của VLHP là 6,96 nm. Hiệu suất hấp phụ đạt 99,82± 0,10% ở nồng độ đầu của MB là 500 mg/L và pH 8 tại nhiệt độ 30℃ trong vòng 40 phút đã cho thấy VLHP có khả năng xử lý chất màu MB rất tốt. Quá trình hấp phụ tuân theo mô hình đẳng nhiệt hấp phụ Langmuir ở khoảng nồng độ từ 10-50 mg/L, trong khi mô hình hấp phụ đẳng nhiệt Freundlich lại phù hợp với khoảng nồng độ MB ban đầu 50-500 mg/L.
Article Details
Tài liệu tham khảo
Al-Qodah, Z. (2000). Adsorption of dyes using shale oil ash. Water Research, 34(17), 4295-4303. https://doi.org/10.1016/S0043-1354(00)00196-2
Benhachem, F. Z., Attar, T., & Bouabdallah, F. (2019). Kinetic study of adsorption methylene blue dye from aqueous solutions using activated carbon. Chemical Review and Letters, 2(1), 33-39.
Bisschops, I. & Spanjers, H. (2003). Literature review on textile wastewater characterization. Environmental Technology, 24(11), 1399-1411. https://doi.org/10.1080/09593330309385684
Cardoso, N. F., Pinto, R. B., Lima, E. C., Calvete, T., Amavisca, C. V., Royer, B., Cunha, M. L., Fernandes, T. H. M., & Pinto, I. S. (2011). Removal of remazol black B textile dye from aqueous solution by adsorption. Desalination, 269(1-3), 92-103. https://doi.org/10.1016/j.desal.2010.10.047
Chandra, T. C., Mirna, M. M., Sudaryanto, Y., & Ismadji, S. (2007). Adsorption of basic dye onto activated carbon prepared from durian shell: Studies of adsorption equilibrium and kinetics. Chemical Engineering Journal, 127(1-3), 121-129. https://doi.org/10.1016/j.cej.2006.09.011
Dâas, A., & Hamdaoui, O. (2010). Extraction of anionic dye from aqueous solutions by emulsion liquid membrane. Journal of Hazardous Materials, 178(1-3), 973-981. https://doi.org/10.1016/j.jhazmat.2010.02.033
Doğan, M., Alkan, M., Türkyilmaz, A., & Özdemir, Y. (2004). Kinetics and mechanism of removal of methylene blue by adsorption onto perlite. Journal of Hazardous Materials, 109(1-3), 141-148. https://doi.org/10.1016/j.jhazmat.2004.03.003
El-Gohary, F., & Tawfik, A. (2009). Decolorization and COD reduction of dispersed and reactive dyes wastewater using chemical-coagulation followed by sequential batch reactor (SBR) process. Desalination, 249(3), 1159-1164. https://doi.org/10.1016/j.desal.2009.05.010
El-Naas, M. H., Al-Muhtaseb, S. A., & Makhlouf, S. (2009). Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel. Journal of Hazardous Materials, 164(2-3), 720-725. https://doi.org/10.1016/j.jhazmat.2008.08.059
Gomes, H. T., Machado, B. F., Ribeiro, A., Moreira, I., Rosário, M., Silva, A. M. T., Figueiredo, J. L., & Faria, J. L. (2008). Catalytic properties of carbon materials for wet oxidation of aniline. Journal of Hazardous Materials, 159(2-3), 420-426. https://doi.org/10.1016/j.jhazmat.2008.02.070
Ip, AWM., Barford, J. P., & McKay, G. (2008). Production and comparison of high surface area bamboo derived active carbons. Bioresource Technology, 99, 8909-8916. https://doi.org/10.1016/j.biortech.2008.04.076
Kavitha, D., & Namasivayam, C. (2007). Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresource Technology, 98(1), 14-21. https://doi.org/10.1016/j.biortech.2005.12.008
Kavitha, D., & Namasivayam, C. (2007). Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresource Technology, 98(1), 14-21. https://doi.org/10.1016/j.biortech.2005.12.008
Kastner, J.R., Mani, S., & Juneja, A. (2015). Catalytic decomposition of tar using iron supported biochar. Fuel Processing Technology, 130, 31-37. https://doi.org/10.1016/j.fuproc.2014.09.038
Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS Nano, 4(8), 4806-4814. https://doi.org/10.1021/nn1006368
Namasivayam, C., & Kadirvelu, K. (1994). Coir pith, an agricultural waste by-product, for the treatment of dyeing wastewater. Bioresource Technology, 48(1), 79-81. https://doi.org/10.1016/0960-8524(94)90141-4
Namasivayam, C., & Sangeetha, D. (2004). Equilibrium and kinetic studies of adsorption of phosphate onto ZnCl2 activated coir pith carbon. Journal of Colloid and Interface Science, 280(2), 359-365. https://doi.org/10.1016/j.jcis.2004.08.015
Nasrullah, A., Bhat, A.H., Naeem, A., Isa, M.H., & Danish, M. (2018). High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue. International Journal of Biological Macromolecules, 107, 1792-1799. https://doi.org/10.1016/j.ijbiomac.2017.10.045
Pei, S., Wei, Q., Huang, K., Cheng, H. M., & Ren, W. (2018). Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nature Communications, 9(1), 1-9. https://doi.org/10.1038/s41467-017-02479-z
QCVN. (2008). 13:2008/BTNMT Quy chuẩn kỹ thuật quốc gia nước thải nghành công nghệ diệt may. Hà Nội.
Qin, Y., Wang, L., Zhao, C., Chen, D., Ma, Y., & Yang, W. (2016). Ammonium-functionalized hollow polymer particles as a pH-responsive adsorbent for selective removal of acid dye. ACS Applied Materials & Interfaces, 8(26), 16690-16698. https://doi.org/10.1021/acsami.6b04199
Santamaría-Juárez, G., Gómez-Barojas, E., Quiroga-González, E., Sánchez-Mora, E., Quintana-Ruiz, M., & Santamaría-Juárez, J. D. (2020). Safer modified Hummers’ method for the synthesis of graphene oxide with high quality and high yield. Materials Research Express, 6(12), 125631. https://doi.org/10.1088/2053-1591/ab4cbf
Sesuk, T., Tammawat, P., Jivaganont, P., Somton, K., Limthongkul, P., & Kobsiriphat, W. (2019). Activated carbon derived from coconut coir pith as high performance supercapacitor electrode material. Journal of Energy Storage, 25, 100910. https://doi.org/10.1016/j.est.2019.100910
Sorokina, N. E., Khaskov, M. A., Avdeev, V. V., & Nikol’Skaya, I. V. (2005). Reaction of graphite with sulfuric acid in the presence of KMnO4. Russian Journal of General Chemistry, 75(2), 162-168. https://doi.org/10.1007/s11176-005-0191-4
Suksabye, P., Thiravetyan, P., Nakbanpote, W., & Chayabutra, S. (2007). Chromium removal from electroplating wastewater by coir pith. Journal of Hazardous Materials, 141(3), 637-644. https://doi.org/10.1016/j.jhazmat.2006.07.018
Tan, I. A. W., Ahmad, A. L., & Hameed, B. H. (2008). Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials, 154(1-3), 337-346. https://doi.org/10.1016/j.jhazmat.2007.10.031
Thitame, P. V., & Shukla, S. R. (2016). Porosity development of activated carbons prepared from wild almond shells and coir pith using phosphoric acid. Chemical Engineering Communications, 203(6), 791-800. https://doi.org/10.1080/00986445.2015.1104503
Huy, T. Q. (2012). Nghiên cứu chế tạo than hoạt tính từ xơ dừa bằng phương pháp oxy hóa và ứng dụng làm chất hấp phụ trong xử lý nước thải. Luận án tiến sĩ, Đại học Dân lập Hải Phòng.
Tuyên, T. N. (2021 March 25). Một số vấn đề về môi trường ở Việt Nam hiện nay- thực trạng và giải pháp. http://hdll.vn/vi/nghien-cuu---trao-doi/mot-so-van-de-ve-moi-truong-o-viet-nam-hien-nay--thuc-trang-va-giai-phap.html
Umpierres, C. S., Prola, L. D., Adebayo, M. A., Lima, E. C., Dos Reis, G. S., Kunzler, D. D., Dotto, G., Arenas, L. T., & Benvenutti, E. V. J. E. t. (2017). Mesoporous Nb2O5/SiO2 material obtained by sol-gel method and applied as adsorbent of crystal violet dye. Environmental Technology, 38(5), 566-578. https://doi.org/10.1080/09593330.2016.1202329
Vadivelan, V., & Kumar, K. V. (2005). Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. Journal of Colloid and Interface Science, 286(1), 90-100. https://doi.org/10.1016/j.jcis.2005.01.007
Wu, T., Cai, X., Tan, S., Li, H., Liu, J., & Yang, W. (2011). Adsorption characteristics of acrylonitrile, p-toluenesulfonic acid, 1-naphthalenesulfonic acid and methyl blue on graphene in aqueous solutions. Chemical Engineering Journal, 173(1), 144-149. https://doi.org/10.1016/j.cej.2011.07.050
Yan, H., Tao, X., Yang, Z., Li, K., Yang, H., Li, A., & Cheng, R. (2014). Effects of the oxidation degree of graphene oxide on the adsorption of methylene blue. Journal of Hazardous Materials, 268, 191-198. https://doi.org/10.1016/j.jhazmat.2014.01.015
Yang, S. T., Chen, S., Chang, Y., Cao, A., Liu, Y., & Wang, H. (2011). Removal of methylene blue from aqueous solution by graphene oxide. Journal of Colloid and Interface Science, 359(1), 24-290. https://doi.org/10.1016/j.jcis.2011.02.064