Sàng lọc phân đoạn tảo nâu Dictyopteris polypodioides có khả năng ức chế enzyme -amylase và -glucosidase
Abstract
The use of α-glucosidase inhibitors is considered to be an effective strategy in the treatment of diabetes. 90% MeOH extract of Dictyopteris polypodioides exhibited the strongest α-amylase and α-glucosidase inhibitory with IC50 (52.95±0.28 mgL-1, 88.04±0.05 mgL-1), respectively, non-different with Acarbose (60.88±0.48 mgL-1, 92.16±1.67 mgL-1). Using a silica chromatography column, collecting Fr.2 with potential inhibitory. At a concentration of 0.1 mg/mL, Fr.2 showed remarkable inhibitory of α-amylase and α-glucosidase up to 87.49% và 93.43%, respectively. Fr.2 was constitutively fractionated by the ODS column, separated into Fr.2.1, Fr.2.2, and Fr.2.3. The result illustrated that Fr.2.2 showed excellent inhibitory activity against α-amylase (IC50=26.14 mgL-1) and α-glucosidase (IC50=21.38 mgL-1), significantly higher 3 and 4 times than Acarbose. Analysis of the possible compound in Fr2.2 by 1H-NMR and 13C-NMR, the chemical structure was elucidated as zonarol compound. Therefore, this study suggested that zonarol is the main contribution in Brown algae Dictyopteris polypodioides to controlling glucose postprandial in diabetes patients.
Tóm tắt
Sử dụng hoạt chất tự nhiên có khả năng ức chế enzyme chuyển hóa carbohydrate như α-amylase và α-glucosidase, là một trong những liệu pháp hiệu quả trong điều trị bệnh đái tháo đường (ĐTĐ). Cao chiết 90% MeOH của Tảo nâu Dictyopteris polypodioides cho hiệu quả ức chế enzyme α-amylase và α-glucosidase cao nhất với giá trị IC50 lần lượt là (52,95±0,28 mgL-1, 88,04± 0,05 mg L-1), tương đương chất chuẩn Acarbose (60,88± 0,48 mg L-1, 92,16± 1,67 mg L-1). Cao chiết 90% MeOH được tách bằng sắc ký cột silica gel thu được Fr.2 với hiệu quả ức chế enzyme α-amylase và α-glucosidase tốt nhất (87,49% và 93,43%) ở mức nồng độ 0,1 mg/mL. Nghiên cứu đã sàng lọc được phân đoạn Fr.2.2 (phân tách từ Fr.2 bởi sắc ký cột ODS) cho hiệu quả ức chế enzyme α-amylase (IC50=26,14 mg L-1) và α-glucosidase (IC50= 21,38 mg L-1) tối ưu nhất, cao hơn 3 và 4 lần tương ứng so với chất chuẩn Acarbose. Phân tích phổ 1H-NMR và 13C-NMR đã xác định được cấu trúc hợp chất zonarol trong phân đoạn Fr.2.2. Kết quả nghiên cứu chứng minh hợp chất zonarol là nhóm chất có tiềm năng...
Article Details
Tài liệu tham khảo
Akremi, N., Cappoen, D., Anthonissen, R., Verschaeve, L., & Bouraoui, A. (2017). Phytochemical and in vitro antimicrobial and genotoxic activity in the brown algae Dictyopteris membranacea. South African Journal of Botany, 108, 308-314. https://doi.org/10.1016/j.sajb.2016.08.009
Amaral, S., Mira, L., Nogueira, J. M. F., da Silva, A. P., & Florêncio, M. H. (2009). Plant extracts with anti-inflammatory properties - A new approach for characterization of their bioactive compounds and establishment of structure–antioxidant activity relationships. Bioorganic & medicinal chemistry, 17(5), 1876-1883. https://doi.org/10.1016/j.bmc.2009.01.045
Bhandari, M. R., Jong-Anurakkun, N., Hong, G., & Kawabata, J. (2008). α-Glucosidase and αamylase inhibitory activities of nepalese medicinal herb pakhanbhed (Bergenia ciliata, Haw.). Food Chem, 106(1), 247-252. https://doi.org/10.1016/j.foodchem.2007.05.077
Chen, Y. G., Li, P., Li, P., Yan, R., Zhang, X. Q., Wang, Y., Zhang, X. T., Ye, W. C., & Zhang, Q. W. (2013). α-Glucosidase Inhibitory Effect and Simultaneous Quantification of Three Major Flavonoid Glycosides in Microctis folium. Molecules, 18(4), 4221–4232. https://doi.org/10.3390/molecules18044221
Fenical, W., Sims, J. J., Squatrito, D., Wing, R. M., & Radlick, P. (1973). Marine natural products. VII. Zonarol and isozonarol, fungitoxic hydroquinones from the brown seaweed Dictyopteris zonarioides. The Journal of Organic Chemistry, 38(13), 2383-2386. https://doi.org/10.1021/jo00953a022
Gao, J., Xu, P., Wang, Y., Wang, Y., & Hochstetter, D. (2013). Combined Effects of Green Tea Extracts, Green Tea Polyphenols or Epigallocatechin Gallate with Acarbose on Inhibition against α-Amylase and α-Glucosidase in vitro. Molecules, 18(9), 11614–11623. https://doi.org/10.3390/molecules180911614
Greenfield J. R., & Campbell L.V. (2006). Relationship between inflammation, insulin resistance and type 2 diabetes: cause or effect? Curr Diabetes Rev, 2, 195-211. 10.2174/157339906776818532
Itoh K., Tong K. I., & Yamamoto M. (2004). Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic. Biol. Med, 36, 1208–1213. 10.1016/j.freeradbiomed.2004.02.075
Hộ, P. H. (1999). Cây cỏ Việt Nam, Quyển I. Nhà xuất bản Trẻ Hà Nội.
Jung, H. A., Karki, S., Ehom, N. Y., Yoon, M. H., Kim, E. J., & Choi, J. S. (2014). Anti-diabetic and anti-inflammatory effects of green and red kohlrabi cultivars (Brassica oleracea var. gongylodes). Preventive nutrition and food science, 19(4), 281. 10.3746/pnf.2014.19.4.281
Kolsi, R. B. A., Frikha, D., Salah, H. B., Jribi, I., Patti, F. P., Allouche, N., & Belghith, K. (2017). Phenolic composition and biological activities of brown alga Dictyopteris polypodioides. Journal of Pharmacognosy and Phytochemistry, 6(2), 109-113.
Kumagai, M., Nishikawa, K., Matsuura, H., Umezawa, T., Matsuda, F., & Okino, T. (2018). Antioxidants from the brown alga Dictyopteris undulata. Molecules, 23(5), p.1214. 10.3390/molecules23051214
Lee, J. H., & Kim G. H. (2013). Evaluation of antioxidant activity of marine algae-extracts from Korea. J Aquatic Food Product Technol, 24(3), 227-240. https://doi.org/10.1080/10498850.2013.770809
Luft, V. C., Schmidt, M. I., Pankow, J. S., Couper, D., Ballantyne, C. M., Young, J. H., & Duncan, B. B. (2013). Chronic inflammation role in the obesity-diabetes association: a case-cohort study. Diabetol Metab Syndr, 5, 31. 10.1186/1758-5996-5-31
Mori, K., & Komatsu, M. (1986). Synthesis and Absolute Configuration of Zonarol. A Fungitoxic Hydroquinone from the Brown Seaweed Dictyoptfris Zonarioides (1). Bulletin des Societes Chimiques Belges, 95(9‐10), 771-781. https://doi.org/10.1002/bscb.19860950906
Rupasinghe, H. P. V., Sekhon-Loodu, S., Mantso, T., & Panayiotidis, M. I. (2016). Phytochemicals in regulating fatty acid β-oxidation: Potential underlying mechanisms and their involvement in obesity and weight loss. Pharmacol Ther, 165, 153-163. https://doi.org/10.1016/j.pharmthera.2016.06.005
Shai, L. J., Magano, S. R., Lebelo, S. L., & Mogale, A. M. (2011). Inhibitory effects of five medicinal plants on rat alpha-glucosidase: Comparison with their effects on yeast alpha-glucosidase. Journal of Medicinal Plants Research, 5(13), 2863-2867.
Shimizu, H., Koyama, T., Yamada, S., Lipton, S. A., & Satoh, T. (2015). Zonarol, a sesquiterpene from the brown algae Dictyopteris undulata, provides neuroprotection by activating the Nrf2/ARE pathway. Biochemical and biophysical research communications, 457(4), 718-722. https://doi.org/10.1016/j.bbrc.2015.01.059
Talalay, P. (2000). Chemoprotection against cancer by induction of phase 2 enzymes. Biofactors, 12, 5–11. https://doi.org/10.1002/biof.5520120102
Thilagam, E., Parimaladevi, B., Kumarappan, C., & Mandal, S. C. (2013). α-Glucosidase and α-amylase inhibitory activity of Senna surattensis. Journal of acupuncture and meridian studies, 6(1), 24-30. https://doi.org/10.1016/j.jams.2012.10.005
Trang, Đ. T. X., Anh, B. T., Mến, T. T., & Anh, P. T. L. (2012). Khảo sát khả năng điều trị bệnh tiểu đường của cao chiết lá Ổi (Psidium guajava L.). Tạp chí Khoa học Trường Đại học Cần Thơ, 22b, 163-171.
Vicente, T. F., Lemos, M. F., Félix, R., Valentão, P., & Félix, C. (2021). Marine Macroalgae, a Source of Natural Inhibitors of Fungal Phytopathogens. Journal of Fungi, 7(12), 1006. https://doi.org/10.3390/jof7121006
Wang, H., Du, Y. J., & Song, H. C. (2010). α-Glucosidase and α-amylase inhibitory activities of guava leaves. Food chemistry, 123(1), 6-13. https://doi.org/10.1016/j.foodchem.2010.03.088
Wang, Z. B., Jiang, H., Xia, Y. G., Yang, B. Y., & Kuang, H. X. (2012). α-Glucosidase Inhibitory Constituents from Acanthopanax senticosus Harm Leaves. Molecules, 17(6), 6269–6276. https://doi.org/10.3390/molecules17066269
Yamada, S., Koyama, T., Noguchi, H., Ueda, Y., Kitsuyama, R., Shimizu, H., Tanimoto, A., Wang, K. Y., Nawata, A., Nakayama, T., & Sasaguri, Y. (2014). Marine hydroquinone zonarol prevents inflammation and apoptosis in dextran sulfate sodium-induced mice ulcerative colitis. PloS one, 9(11), https://doi.org/10.1371/journal.pone.0113509
Zhenhua. Y., Wei, Z., Fajin, F., Yong, Z., & Wenyi, K. (2014). α-glucosidase inhibitors isolated from medicinal plants. Food Science and Human Wellness, 3(3-4), 136-174. https://doi.org/10.1016/j.fshw.2014.11.003