Sự tồn tại nghiệm của bài toán cân bằng ngẫu nhiên
Abstract
The purpose of this paper is to study the existence of solutions for stochastic equilibrium problems. A new existence result is established based on using notion of random cyclic quasimonotonicity, without convexity assumptions. Some examples are also provided to show the advantages of the result.
Tóm tắt
Bài báo này nghiên cứu sự tồn tại nghiệm cho bài toán cân bằng ngẫu nhiên. Một kết quả tồn tại mới được thiết lập trên cơ sở dùng khái niệm về tính tựa đơn điệu vòng quanh ngẫu nhiên, không dùng các giả thiết về tính lồi. Vài ví dụ được cung cấp nhằm chỉ ra sự thuận lợi của kết quả.
Article Details
Tài liệu tham khảo
Blum, E., & Oettli, W. (1994). From optimization and variational inequalities to equilibrium problems. Math. Student, 63, 123-145.
Bianchi, M., & Pini, R. (2005). Coercivity conditions for equilibrium problems. Journal of Optimization Theory and Applications, 124(1), 79-92.
Flores-Bazán, F. (2000). Existence theorems for generalized noncoercive equilibrium problems: the quasiconvex case. SIAM Journal on Optimization, 11(3), 675–690
Gwinner, J., & Raciti, F. (2006). Random equilibrium problems on networks. Mathematical and Computer Modelling, 43(7), 880-891.
Iusem, A. N., Kassay, G., & Sosa, W. (2009). On certain conditions for the existence of solutions of equilibrium problems. Mathematical Programming Series B, 116(1), 259-273.
Lam, Q. A., & Phan, Q. K. (2004). Semicontinuity of the solution set of
parametric multivalued vector quasiequilibrium problems. Journal of Mathematical Analysis and Applications, 294(2), 699-711.
Lam, Q. A., & Phan, Q. K. (2010). Continuity of solution maps of parametric quasiequilibrium problems. Journal of Global Optimization, 46(2), 247-259.
Lam, Q. A., Nguyen, X. H., Nguyen, T. K., Nguyen, H. Q., & Dang, T. M. V. (2021). On the existence and stability of solutions to stochastic equilibrium problems. RAIRO Operations Research, 55, 705–718.
Le, D. M., & Oettli, W. (1992). Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Analysis: Theory, Methods & Applications, 18(12), 1159-1166.
Lin, G-H., & Fukushima, M. (2010). Stochastic Equilibrium Problems and Stochastic Mathematical Programs with Equilibrium Constraints: A Survey. Pacific Journal of Optimzation, 6(3), 455-482.
Mansour, M. A., Elakri, R. A., & Laghdir, M. (2018). From deterministic to stochastic equilibrium problems. Le Matematiche, 73(2), 213-233.
Phan, Q. K., & Nguyen, H. Q. (2019). Versions of the Weierstrass theorem for bifunctions and the solution existence in optimization. SIAM Journal on Optimization, 29(2), 1502-1523.