Nghiên cứu kỹ thuật điều khiển bù dự đoán thông minh ứng dụng trong lọc sóng hài cho tải phi tuyến hệ thống điện ba pha
Abstract
This research proposes a combination of the smart predictive compensation control in the Active power filter to improve power quality for the three-phase-power system. Using soft computing to improve the quality of electricity for the system is the choice of our new research approach to the efficient harmonic filter. The use of a Voltage Source Inverter (VSI) for the system as an Active power filter is one of the most population solutions for power quality control and advanced software methods are also an option to upgrade the system with the new standards at a lower cost.
Filter harmonic on the three-phase system using active filter circuit with the using of predictive control algorithm makes filtration efficiency higher, especially for expansion and improvement issues concerning the three-phase Non-linear-load system, this solution becomes much simpler and more efficient than investing in a new system in terms of cost, matching with improving the quality of the system, meeting the requirements of high-quality power. The research has also improved the THD by <5%, confirming the reliability and easily of upgrading the power quality control systems.
Tóm tắt
Ổn định chất lượng hệ thống điện ba pha khi nhu cầu gia tăng tải và chất lượng điện là chủ đề nghiên cứu quan trọng và giải pháp sử dụng hệ thống lọc tích cực để nâng cao chất lượng điện phổ biến hiện nay. Tuy nhiên, hướng nghiên cứu mới trong bài viết là ứng dụng bộ điều khiển bù dự đoán thông minh để nâng cao hiệu quả bộ lọc tích cực ba pha.
Hệ thống lọc tích cực có sự hỗ trợ của bộ điều khiển bù dự đoán thông minh làm cho hiệu quả lọc cao hơn và cải tiến phần cứng tốt hơn, đáp ứng được các yêu cầu về nguồn điện chất lượng cao. Kết quả mô phỏng cho thấy chỉ số méo hài dòng điện lưới ba pha đã được cải thiện với chỉ số THD < 5% khẳng định ứng dụng bộ điều khiển bù dự đoán thông minh có tính khả thi và hiệu quả cao.
Article Details
Tài liệu tham khảo
Blooming, T. M., & Carnovale, D. J. (1992). Application of IEEE STD 519-1992 harmonic limits. IEEE, 1–9.
Damon, R. W. (1981). IEEE Standards. IEEE Power Engineering Review, PER-1(11), 1. https://doi.org/10.1109/MPER.1981.5511873
Dehini, R., & Benachaiba, C. (2020). Improving the active power filter performance by robust self-tuning face to sudden change of load. Journal of Electrical Engineering, 1–9.
Han, Y., & Xu, L. (2011). Design and implementation of a robust predictive control scheme for active power filters. Journal of Power Electronics, 11(5), 751–758. https://doi.org/10.6113/JPE.2011.11.5.751
Iturra, R. G., Cruse, M., Mutze, K., Dresel, C., Soleimani, I., & Thiemann, P. (2018). Model predictive control for shunt active power filter with harmonic power recycling capability. 2018 International Conference on Smart Energy Systems and Technologies, SEST 2018 - Proceedings. https://doi.org/10.1109/SEST.2018.8495890
Iturra, R. G., Cruse, M., Mutze, K., Thiemann, P., & Dresel, C. (2019). The power balance of shunt active power filter based on voltage detection: A harmonic power recycler device. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2019-March, 1835–1842. https://doi.org/10.1109/APEC.2019.8722037
Jian, L., Xingrui, L., Jiangfeng, Z., Hao, Z., & Li, F. (2019). Dual closed-loop current controller for a 4-leg shunt APF based on repetitive control. International Journal of Electronics, 106(3), 349–364. https://doi.org/10.1080/00207217.2018.1537403
Lai, J., Zhou, H., & Hu, W. (2016). New adaptive fuzzy PID control method and its application in FCBTM. International Journal of Computers, Communications, and Control, 11(3), 394–404. https://doi.org/10.15837/ijccc.2016.3.753
Moor Neto, J. A., Lovisolo, L., França, B. W., & Aredes, M. (2009). Grid synchronization system for power converters. 2009 Brazilian Power Electronics Conference, COBEP2009, 749–755. https://doi.org/10.1109/COBEP.2009.5347692
Peresada, S. (2020). Selective Estimation of Three-Phase Mains Current for Shunt Active Power Filter. 68–72.
Sharma, B., Swarnkar, N. K., & Sharma, R. (2020). PI CONTROLLER SVPWM SHUNT ACTIVE POWER FILTER FOR HARMONICS REDUCTION IN POWER SYSTEM. Journal of Engineering and Technology, 5(1), 1–27.
Suul, J. A., Ljøkelsøy, K., Midtsund, T., & Undeland, T. (2011). Synchronous reference frame hysteresis current control for grid converter applications. IEEE Transactions on Industry Applications, 47(5), 2183–2194. https://doi.org/10.1109/TIA.2011.2161738
Tian, X., Jiang, Q., & Wei, Y. (2013). Research on novel railway uninterruptible flexible connectors with series-connected transformers and back-to-back converters. 2013 IEEE ECCE Asia Downunder - 5th IEEE Annual International Energy Conversion Congress and Exhibition, IEEE ECCE Asia 2013, 111–116. https://doi.org/10.1109/ECCE-Asia.2013.6579082
Zhang, H. B., Finney, S. J., Massoud, A. M., Fletcher, J. E., & Williams, B. W. (2008). Operation of a three-level NPC active power filter with unbalanced and nonlinear loads. 22–26. https://doi.org/10.1049/cp:20080476
Zhang, X., Wang, Y., Yu, C., Guo, L., & Cao, R. (2016). Hysteresis model predictive control for high-power grid-connected inverters with output LCL filter. IEEE Transactions on Industrial Electronics, 63(1). https://doi.org/10.1109/TIE.2015.2477060
Zilouchian, A., & Jamshidi, M. (2001). Intelligent Control Systems Using Soft Computing Methodologies. CRC. http://library1.nida.ac.th/ termpaper6/sd/2554/19755.pdf