Phạm Thị Tuyết Ngân * , Vũ Hùng Hải , Vũ Ngọc Út Huỳnh Trường Giang

* Người chịu trách nhiệm về bài viết: Phạm Thị Tuyết Ngân (email: pttngan@ctu.edu.vn)

Abstract

The study was conducted to determine the optimal concentration of Bacillus CM3.1 on water quality and growth of whiteleg shrimp Litopenaeus vannamei. The study was designed in two trials. Trial 1 evaluated the decomposition of the organic matter in shrimp pond effluent by using Bacillus CM3.1 at different doses (102, 103, 104, 105 and 106 CFU/mL) during 48 h. Trial 2 assessed the effects of Bacillus CM3.1 on water quality and growth of whiteleg shrimp. Shrimp were randomly distributed in 500L composite tanks with a density of 100 individuals/tank. The tanks were designed with 4 treatments including (i) control (without bacteria) and groups added Bacillus CM3.1 into rearing water to reach final doses of (ii) 102, (iii) 103, and (iv) 104 CFU/mL. Each group was set in 3 replicates and lasted in 60 days. The results showed that addition of Bacillus at different doses accelerated organic decomposition of shrimp effluent resulting in an increasing concentration of TAN, and simultaneously a significant decrease in COD, TSS and OSS concentration after 48h. Administration of Bacillus CM3.1 into rearing water at a dose of 104 CFU/mL improved significantly water quality parameters such as TAN, N-NO2-, BOD5, COD and total Bacillus count. A significant decrease in total Vibrio count was recorded in groups added bacteria. Growth performance parameters of shrimp including specific growth rate (SGR), survival rate and biomass significantly increased in all groups added Bacillus, especially at a dose of 104 CFU/mL.

Keywords: Bacillus CM3.1, water quality, growth performance, Litopenaeus vannamei

Tóm tắt

Nghiên cứu được thực hiện nhằm xác định mật độ tối ưu của Bacillus CM3.1 lên chất lượng nước và tăng trưởng của tôm thẻ chân trắng Litopenaeus vannamei. Nghiên cứu bao gồm 2 thí nghiệm. Thí nghiệm 1 đánh giá khả năng phân hủy vật chất hữu cơ của chủng Bacillus CM3.1 ở các mật độ khác nhau (102, 103, 104, 105 và 106 CFU/mL) trong 48 giờ. Thí nghiệm 2 đánh giá ảnh hưởng của Bacillus CM3.1 lên chất lượng nước và tăng trưởng của tôm. Tôm được bố trí ngẫu nhiên vào bể composite 500L  với mật độ 100 con/bể 4 nghiệm thức (đối chứng và 3 nghiệm thức bổ sung với mật độ Bacillus 102, 103, 104 CFU/mL), mỗi nghiệm thức được lặp lại 3 lần và thời gian nuôi 60 ngày. Kết quả cho thấy việc bổ sung Bacillus CM3.1 ở các nồng độ khác nhau thúc đẩy quá trình phân hủy vật chất hữu cơ dẫn đến gia tăng hàm lượng TAN trong nước thải, đồng thời giảm đáng kể hàm lượng COD, TSS và OSS sau 48 giờ. Khi bổ sung chủng Bacillus CM3.1 vào nước ương tôm ở mật độ 104 CFU/mL giúp cải thiện đáng kể các thông số TAN, N-NO2-, BOD5, COD và mật độ Bacillus. Mật độ tổng Vibrio trong nước giảm đáng kể ở các nghiệm thức bổ sung vi khuẩn. Các thông số tăng trưởng như tốc độ tăng trưởng tương đối về khối lượng (SGR), tỉ lệ sống và sinh khối tôm tăng đáng kể ở các nghiệm thức bổ sung Bacillus, đặc biệt là nghiệm thức 104 CFU/mL.

Từ khóa: Bacillus CM3.1, chất lượng nước, tăng trưởng, Litopenaeus vannamei.

Article Details

Tài liệu tham khảo

APHA. (2017). Standard methods for the examination of water and wastewater, 23rd Edition. American public health association, American water works association, water environment federation, Denver. 1504 pp.

Bao, X., & Shen, W. (2005). Manufacture and application of micro
ecological agents. In: www.BIOX.CN 2005:4-16

Biesta-Peters, E. G., Reij, M. W., Joosten, H., Gorris, L. G. M., & Zwietering, M. H. (2010). Comparison of two optical-density-based methods and a plate count method for estimation of growth parameters of Bacillus cereus. Applied and environmental microbiology,76,1399-1405.

Boyd, C. E. (1998). Water quality for pond aquaculture. Alabama Agriculture Experiment Station, Auburn University, Alabama Research and Development Series, (Department of fisheries and Applied Aquacultures Auburn University, Alabama 36849 USA), 43, 37p.

Boyd, C.E. 2010. Water temperature in aquaculture. Global aquaculture advocate, 28-30.

Chai, P. C., Song, X. L., Chen, G. F., Xu, H., & Huang, J. (2016). Dietary supplementation of probiotic Bacillus PC465 isolated from the gut of Fenneropenaeus chinensis improves the health status and resistance of Litopenaeus vannamei against white spot syndrome virus. Fish & Shellfish Immunology, 54, 602-611.

Chanratchakool, P. (2003). Problem in Penaeus monodon culture in low salinity areas. Aquaculture Aisa, 8, 54 - 55.

Di, J., Chu, Z., Zhang, S., Huang, J., Du, H., & Wei, Q. (2019). Evaluation of the potential probiotic Bacillus subtilis isolated from two ancient sturgeons on growth performance, serum immunity and disease resistance of Acipenser dabryanus. Fish & Shellfish Immunology, 93, 711-719.

Ebeling, J. M., Timmons, M. B., & Bisogni, J. J. (2006). Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic control of ammonia-nitrogen in aquaculture in aquaculture production systems. Aquaculture, 257, 346 – 358.

Fidiastuti, H. R., Lathifah, A. S., Amin, M., & Utomo, Y. (2020). Studies of Bacillus subtilis NAP1 to degrade BOD, COD, TSS, and pH: The indigenous bacteria in Indonesia batik wastewater. Journal of Physics: Conference Series, 1511(1), 012060.

Furtado, P. S., Poersch, L. H., & Wasielesky, W. (2011). Effect of calcium hydroxide, carbonate and sodium bicarbonate on water quality and zootechnical performance of shrimp Litopenaeus vannamei reared in bio-flocs technology (BFT) systems. Aquaculture, 321, 130 – 135.

Gaona, C. A. P., de Almeida, M. S., Viau, V., Poersch, L. H., & Wasielesky Jr, W. (2015). Effect of different total suspended solids levels on a Litopenaeus vannamei (Boone, 1931) BFT culture system during biofloc formation. Aquaculture Research, 48, 1070-1079.

Hlordzi, V., Kuebutornye, F. K. A., Afriyie, G., Abarike, E. D., Lu, Y., Chi, S., & Anokyewaa, M. A. (2020). The use of Bacillus species in maintenance of water quality in aquaculture: A review. Aquaculture Reports, 18, 100503.

Hui, C., Wei, R., Jiang, H., Zhao, Y., & Xu, L. (2019). Characterization of the ammonification, the relevant protease production and activity in a high-efficiency ammonifier Bacillus amyloliquefaciens DT. International Biodeterioration & Biodegradation, 142, 11-17.

Kim, S., Jeon, H., Han, H., & Hur, J. W. (2021). Evaluation of Bacillus albus SMG-1 and B. safensis SMG-2 isolated from Saemangeum Lake as probiotics for aquaculture of white shrimp (Litopenaeus vannamei). Aquaculture Reports, 20, 100743

Kuebutornyea, F. K. A., Abarikea, E. D., & Lu, Y. (2019). A review on the application of Bacillus as probiotics in aquaculture. Fish and Shellfish Immunology, 87, 820–828.

Liu, K. F., Chiu, C. H., Shiu, Y. L., Cheng, W., & Liu, C. H. (2010). Effects of the probiotic, Bacillus subtilis E20, on the survival, development, stress tolerance, and immune status of white shrimp, Litopenaeus vannamei larvae. Fish & Shellfish Immunology, 28(5-6), 837–844.

Luo, L., Zhao, Z., Huang, X., Du, X., Wang, C. a., Li, J. & Xu, Q. (2016). Isolation, Identification, and Optimization of Culture Conditions of a Bioflocculant-Producing Bacterium Bacillus megaterium SP1 and Its Application in Aquaculture Wastewater Treatment. BioMed Research International, 2758168.

Ma, Q., & He, Z. (2020). Screening and characterization of nitrite-degrading bacterial isolates using a novel culture medium. Journal of Ocean University of China, 19(1), 241-248.

McNeely, R., N., Neimanis, V., P., & Dwyer, L. (1979). Water quality sources book. A guide to water quality parameters, 112p.

Ngân P. T.T. (2012). Nghiên cứu quần thể vi khuẩn chuyển hóa đạm trong bùn đáy ao nuôi tôm sú (Penaues monodon). Luận án tiến sĩ, khoa Thủy sản, trường Đại học Cần Thơ.

Ngân, P.T.T., Hải V.H., Út, V.N. & Giang, H.T. (2021). Chọn lọc vi khuẩn Bacillus sp. từ ao nuôi tôm quảng canh có khả năng phân hủy hữu cơ và kháng Vibrio parahaemolyticus gây bệnh trên tôm thẻ. Tạp chí Khoa học Trường Đại học Cần Thơ, 57(3), 191-199.

Nimrat, S., Khaopong, W., Sangsong, J., Boonthai, T., & Vuthiphandchai, V. (2019). Improvement of growth performance, water quality and disease resistance against Vibrio harveyi of postlarval whiteleg shrimp (Litopenaeus vannamei) by administration of mixed microencapsulated Bacillus probiotics. Aquaculture Nutrition, 26(5), 1407-1418.

Nimrat, S., Suksawat, S., Boonthai, T., & Vuthiphandchai, V. (2012). Potential Bacillus probiotics enhance bacterial numbers, water quality and growth during early development of white shrimp (Litopenaeus vannamei). Veterinary Microbiology, 159(3–4), 443-450.

Rajan, D., S. 2015. An Assessment of the biological oxygen demand of Thekkumbhagam creek of Ashtamudi estuary. International Journal of Fisheries and Aquatic Studies, 2, 395 - 397.

Rho, T., Choi, S. H., Kim, E. S., Kang, N. Y, Cho, S. R., Khang, S. H., Kang, D. J. (2018). Optimization of chemical oxygen demand determination in seawater samples using the Alkaline Potassium Permanganate Method. Ocean Science Journal, 53, 611–619.

Schveitzer, R., Arantes, R., Fóes, P., Espírito Santo, C., Vinatea, L., Seiffert, W., & Andreatta, E. (2013). Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquacultural Engineering, 56, 59–70.

Soltani, M., Ghosh, K., Hoseinifar, S. H., Kumar, V., Lymbery, A. J., Roy, S., & Ringø, E. (2019). Genus Bacillus, promising probiotics in aquaculture: Aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Reviews in Fisheries Science & Aquaculture,

Ziaei-Nejad, S., Rezaei, M. H., Takami, G. A., Lovett, D. L., Mirvaghefi, A. R., & Shakoun, M. (2006). The effect of Bacillus spp. Bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquaculture, 252, 516-524.

Zink, I. C., Benetti, D. D., Douillet, P. A., Margulies, D., & Scholey, V. P. (2011). Improvement of ưater chemistry with Bacillus probiotics inclusion during simulated transport of yellowfin Tuna Yolk Sac Larvae. North American Journal of Aquaculture, 73(1), 42-48.