Hệ phân phối mới cho thuốc kháng viêm không steroid (NSAID)
Abstract
Inflammatory processes are increasingly being identified at the core of many different disease states (e.g. heart disease, cancer, diabetes). While non-steroidal anti-inflammatory drugs are generally safe, there are some serious side effects that can be associated with their usage, particularly when given systemically or orally. Therefore, anti-inflammatory strategies available through drug delivery have undergone renewed interest. Novel drug delivery systems like systemic targeting or encapsulation, local injection, localized delivery, implant coating or incorporation, and transdermal delivery are promising tools as they have been successful in overcoming the disadvantages associated with conventional drug delivery systems like low solubility and permeability, poor bioavailability, degradation by gastrointestinal enzymes, first-pass metabolism, food interactions, and toxicity. This review comments on a sampling of existing methods for localized or targeted delivery of non-steroidal anti-inflammatory drugs, with the goal of helping future research focus on bettering methods shown to be effective and filling the gaps of knowledge in this field.
Tóm tắt
Quá trình viêm được xác định ngày càng rõ ràng là nguyên nhân cốt lõi của nhiều tình trạng bệnh khác nhau (ví dụ: bệnh tim, ung thư, tiểu đường). Mặc dù thuốc kháng viêm không steroid nhìn chung là an toàn nhưng cũng có một số tác dụng phụ nghiêm trọng liên quan đến đường sử dụng, đặc biệt khi đưa vào hệ tuần hoàn hoặc sử dụng đường uống. Do đó, chiến lược kháng viêm hướng mục tiêu hoặc sử dụng hệ phân phối thuốc nhận được sự quan tâm nghiên cứu hàng đầu. Các hệ phân phối thuốc mới như hệ hướng mục tiêu hoặc đóng gói, tiêm tại chỗ, phóng thích tại chỗ, lớp phủ hoặc kết hợp cấy ghép và hệ phân phối thuốc qua da là những công cụ đầy hứa hẹn vì khắc phục những nhược điểm liên quan đến hệ phân phối thuốc thông thường như độ hòa tan và tính thấm thấp, sinh khả dụng kém, bị phân hủy bởi các enzym tiêu hóa, chuyển hóa lần đầu, tương tác với thức ăn và độc tính. Đánh giá này nhận xét và tổng kết các phương pháp hiện có giúp phân phối thuốc kháng viêm không steroid tại chỗ hoặc hướng mục tiêu với mục đích hỗ trợ nghiên cứu trong tương lai tập trung vào các phương pháp thành công được chứng minh là có hiệu quả cao và lấp đầy khoảng trống kiến thức trong lĩnh vực này.
Article Details
Tài liệu tham khảo
Ah, Y. C., Choi, J. K., Choi, Y. K., Ki, H. M. & Bae, J. H. (2010). A novel transdermal patch incorporating meloxicam: in vitro and in vivo characterization. International Journal of Pharmaceutics, 385(1-2), 12-19. DOI: 10.1016/j.ijpharm.2009.10.013
Ahad, A., Raish, M., Al-Mohizea, A. M., Al-Jenoobi, F. I. & Alam, M. A. (2014). Enhanced anti-inflammatory activity of carbopol loaded meloxicam nanoethosomes gel. International Journal of Biological Macromolecules, 67, 99-104. DOI: 10.1016/j.ijbiomac.2014.03.011
Ahmed, I., Nafadi, M. & Fatahalla, F. (2006). Formulation of a fast-dissolving ketoprofen tablet using freeze-drying in blisters technique. Drug Development and Industrial Pharmacy, 32(4), 437-442. DOI: 10.1080/03639040500528913
Ailincai, D., Agop, M., Marinas, I. C., Zala, A., Irimiciuc, S. A., Dobreci, L., Petrescu, T. C., Volovat, C. (2021). Theoretical model for the diclofenac release from PEGylated chitosan hydrogels. Drug Delivery, 28(1), 261-271. DOI: 10.1080/10717544.2021.1876181
Akbari, J., Saeedi, M., Morteza-Semnani, K., Hashemi, S. M. H., Babaei, A., Eghbali, M., Mohammadi, M., Rostamkalaei, S. S., Asare-Addo, K., Nokhodchi, A. (2021). Innovative topical niosomal gel formulation containing diclofenac sodium (niofenac). Journal of Drug Targeting, 1-10. DOI: 10.1080/1061186X.2021.1941060.
Akbari, J., Saeedi, M., Morteza-Semnani, K., Rostamkalaei, S. S., Asadi, M., Asare-Addo, K. & Nokhodchi, A. (2016). The design of naproxen solid lipid nanoparticles to target skin layers. Colloids Surf B Biointerf, 145, 626-633. DOI: 10.1016/j.colsurfb.2016.05.064
Akduman, C., Ozgueney, I. & Kumbasar, E. P. A. (2014). Electrospun thermoplastic polyurethane mats containing naproxen-cyclodextrin inclusion complex. Autex Research Journal, 14(4), 239-246. DOI: 10.2478/aut-2014-0024
Akduman, C., Ozgueney, I. & Kumbasar, E. P. A. (2016). Preparation and characterization of naproxen-loaded electrospun thermoplastic polyurethane nanofibers as a drug delivery system. Materials Science and Engineering C: Materials for Biological Applications, 64, 383-390. DOI: 10.1016/j.msec.2016.04.005
Amodwala, S., Kumar, P. & Thakkar, H. P. (2017). Statistically optimized fast dissolving microneedle transdermal patch of meloxicam: a patient friendly approach to manage arthritis. European Journal of Pharmaceutical Sciences, 104, 114-123. DOI: 10.1016/j.ejps.2017.04.001
Amrite, A. C., Ayalasomayajula, S. P., Cheruvu, N. P. S. & Kompella, U. B. (2006). Single periocular injection of celecoxib-PLGA microparticles inhibits diabetesinduced elevations in retinal PGE2, VEGF, and vascular leakage. Investigative Ophthalmology & Visual Science, 47(3), 1149-1160. DOI: 10.1167/iovs.05-0531
Arias, J. L., López-Viota, M., López-Viota, J. & Delgado, Á. V. (2009). Development of iron/ ethylcellulose (core/shell) nanoparticles loaded with diclofenac sodium for arthritis treatment. International Journal of Pharmaceutics, 382(1-2), 270-276. DOI: 10.1016/j.ijpharm.2009.08.019
Arica, B., Çaliş, S., Atilla, P., Durlu, N., Cakar, N., Kaş, H. & Hincal, A. (2005). In vitro and in vivo studies of ibuprofen-loaded biodegradable alginate beads. Journal of Microencapsulation, 22(2), 153-165. DOI: 10.1080/02652040400026319
Babar, A., Bellete, T. & Plakogiannis, F. (1999). Ketoprofen suppository dosage forms: in vitro release and in vivo absorption studies in rabbits. Drug Development and Industrial Pharmacy, 25(2), 241-245. DOI: 10.1081/ddc-100102166
Badri, W., Miladi, K., Nazari, Q. A., Greige-Gerges, H., Fessi, H. & Elaissari, A. (2016). Encapsulation of NSAIDs for inflammation management: overview, progress, challenges and prospects. International Journal of Pharmaceutics, 515(1-2), 757-773. DOI: 10.1016/j.ijpharm.2016.11.002
Baruch, L., Benny, O., Gilert, A., Ukobnik, M., Ben, I. O. & Machluf, M. (2009). Alginate-PLL cell encapsulation system Co-entrapping PLGA-microspheres for the continuous release of anti-inflammatory drugs. Biomedical Microdevices, 11(5), 1103-1113. DOI: 10.1007/s10544-009-9327-3
Basar, A. O., Castro, S., Torres-Giner, S., Lagaron, J. M. & Sasmazel, H. T. (2017). Novel poly(e-caprolactone)/gelatin wound dressings prepared by emulsion electrospinning with controlled release capacity of Ketoprofen anti-inflammatory drug. Materials Science and Engineering C, 81, 459-468. DOI: 10.1016/j.msec.2017.08.025
Bernardi, A., Zilberstein, A., Jäger, E., Campos, M., Morrone, F., Calixto, J., Pohlmann, A., Guterres, S. & Battastini, A. (2009). Effects of indomethacin‐loaded nanocapsules in experimental models of inflammation in rats. British Journal of Pharmacology, 158(4), 1104-1111. DOI: 10.1111/j.1476-5381.2009.00244.x
Bhardwaj, P., Chaurasia, H., Chaurasia, D., Prajapati, S. K. & Singh, S. (2010). Formulation and in-vitro evaluation of floating microballoons of indomethacin. Acta Poloniae Pharmaceutica, 67(3), 291-298.
Biju, S., Saisivam, S., Rajan, N. M. G. & Mishra, P. (2004). Dual coated erodible microcapsules for modified release of diclofenac sodium. European Journal of Pharmaceutics and Biopharmaceutics, 58(1), 61-67. DOI: 10.1016/j.ejpb.2004.03.021
Boateng, J. S., Pawar, H. V. & Tetteh, J. (2013). Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing. International Journal of Pharmaceutics, 441(1-2), 181-191. DOI: 10.1016/j.ijpharm.2012.11.045
Canbolat, M. F., Celebioglu, A. & Uyar, T. (2014). Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers. Colloids Surf B, 115, 15-21. DOI: 10.1016/j.colsurfb.2013.11.021
Çetin, E. Ö., Buduneli, N., Atlıhan, E. & Kırılmaz, L. (2004). In vitro studies on controlled‐release cellulose acetate films for local delivery of chlorhexidine, indomethacin, and meloxicam. Journal of Clinical Periodontology, 31(12), 1117-1121. DOI: 10.1111/j.1600-051X.2004.00620.x
Chen, H., Chang, X., Du, D., Li, J., Xu, H. & Yang, X. (2006). Microemulsion-based hydrogel formulation of ibuprofen for topical delivery. International Journal of Pharmaceutics, 315(1), 52-58. DOI: 10.1016/j.ijpharm.2006.02.015
Choi, J. M., Lee, B., Jeong, D., Park, K. H., Choi, E. J., Jeon, Y. J., Dindulkar, S. D., Cho, E., Do, S. H., Lee, K., Lee, I. S., Park, S., Jun, B. H., Yu, J. H. & Jung, S. (2017). Characterization and regulated naproxen release of hydroxypropyl cyclosophoraose-pullulan microspheres. Journal of Industrial and Engineering Chemistry, 48, 108-118. DOI: 10.1016/j.jiec.2016.12.026
Dalmora, M., Dalmora, S. & Oliveira, A. G. D. (2001). Inclusion complex of piroxicam with β-cyclodextrin and incorporation in cationic microemulsion. In vitro drug release and in vivo topical anti-inflammatory effect. International Journal of Pharmaceutics, 222(1), 45-55. DOI: 10.1016/s0378-5173(01)00692-5
Das, S. & Subuddhi, U. (2016). Controlled and targeted delivery of diclofenac sodium to the intestine from pH-Responsive chitosan/ poly(vinyl alcohol) interpenetrating polymeric network hydrogels. Polymer Science Series A, 58, 154-166. DOI: 10.1134/S0965545X16020048
Das, S., Banerjee, R. & Bellare, J. (2005). Aspirin loaded albumin nanoparticles by coacervation: implications in drug delivery. Trends in Biomaterials and Artificial Organs, 18(2), 203-212.
De, C., Vervaet, C., Görtz, J., Remon, J. P. & Berlo, J. (2000). Bioavailability of ibuprofen from matrix mini-tablets based on a mixture of starch and microcrystalline wax. International Journal of Pharmaceutics, 208(1), 81-86. DOI: 10.1016/s0378-5173(00)00549-4
Djekic, L., Martinovic, M., Stepanovic-Petrovic, R., Micov, A., Tomic, M. & Primorac, M. (2016). Formulation of hydrogel-thickened nonionic microemulsions with enhanced percutaneous delivery of ibuprofen assessed in vivo in rats. European Journal of Pharmaceutical Sciences, 92, 255-265. DOI: 10.1016/j.ejps.2016.05.005
El-Hady, S. M., AbouGhaly, M. H. H., El-Ashmoony, M. M., Helmy, H. S., El-Gazayerly, O. N. (2020). Colon targeting of celecoxib nanomixed micelles using pulsatile drug delivery systems for the prevention of inflammatory bowel disease. International Journal of Pharmaceutics, 576, 118982. DOI: 10.1016/j.ijpharm.2019.118982
El-Kamel, A., Sokar, M., Al Gamal, S. & Naggar, V. (2001). Preparation and evaluation of ketoprofen floating oral delivery system. International Journal of Pharmaceutics, 220(1), 13-21. DOI: 10.1016/s0378-5173(01)00574-9
Farooq, A., Yar, M., Khan, A. S., Shahzadi, L., Siddiqi, S. A., Mahmood, N., Rauf, A., Qureshi, Z.U. A., Manzoor, F., Chaudhry, A. A. & Ur Rehman, I. (2015). Synthesis of piroxicam loaded novel electrospun biodegradable nanocomposite scaffolds for periodontal regeneration. Materials Science and Engineering C: Materials for Biological Applications, 56, 104-113. DOI: 10.1016/j.msec.2015.06.006
Fattahpour, S., Shamanian, M., Tavakoli, N., Fathi, M., Sheykhi, S. R. & Fattahpour, S. (2015). Design and optimization of alginate - chitosan - pluronic nanoparticles as a novel meloxicam drug delivery system. Journal of Applied Polymer Science, 132(28), 1-12. DOI: 10.1002/app.42241
Ghazaie, M., Ghiaci, P. & Ghiaci, M. (2017). Study on release of naproxen and metformin encapsulated in biopolymer-inorganic mesoporous matrices as controlled drug-delivery systems. Microporous and Mesoporous Mater, 244, 291-300. DOI: 10.1016/j.micromeso.2016.11.004
Goimil, L., Braga, M. E. M., Dias, A. M. A., Gomez-Amoza, J. L., Concheiro, A., Alvarez-Lorenzo, C., de Sousa, H. C. & Garcia-Gonza´lez, C. A. (2017). Supercritical processing of starch aerogels and aerogel-loaded poly(e-caprolactone) scaffolds for sustained release of ketoprofen for bone regeneration. Journal of CO2 Utilization, 18, 237-249. DOI: 10.1016/j.jcou.2017.01.028
Hawkey, C. J. (2001). COX-1 and COX-2 inhibitors. Best Practice & Research Clinical Gastroenterology, 15(5), 801-820. DOI: 10.1053/bega.2001.0236
Horvat, G., Xhanari, K., Finsgar, M., Gradisnik, L., Maver, U., Knez, Z. & Novak, Z. (2017). Novel ethanol-induced pectin-xanthan aerogel coatings for orthopedic applications. Carbohydrate Polymer, 166, 365-376. DOI: 10.1016/j.carbpol.2017.03.008
Hosseinzadeh, H. (2011). Controlled release of diclofenac sodium from pH-responsive carrageenan-g-poly(acrylic acid) superabsorbent hydrogel. Journal of Chemical Sciences, 122(4), 651-659. DOI: 10.1007/s12039-010-0100-1
Islam, M. R., Ahmed, I., Quadir, M. A. & Rahman, M. H. (2010). Once daily sustained-release matrix tablet of naproxen: formulation and in vitro evaluation. Dhaka University Journal of Pharmaceutical Sciences, 9(1), 47-52. DOI: 10.3329/dujps.v9i1.7429
Janjikhel, R. K. & Adeyeye, C. M. (1997). Stereospecific formulation and characterization of sustained release ibuprofen microspheres. Journal of Microencapsulation, 14(4), 409-426. DOI: 10.3109/02652049709033826
Jia, H. & Kerr, L. L. (2013). Sustained ibuprofen release using composite poly(lacticco-glycolic acid)/titanium dioxide nanotubes from Ti implant surface. Journal of Pharmaceutical Sciences, 102(7), 2341-2348. DOI: 10.1002/jps.23580
Joseph, N., Lakshmi, S. & Jayakrishnan, A. (2002). A floating-type oral dosage form for piroxicam based on hollow polycarbonate microspheres: in vitro and in vivo evaluation in rabbits. Journal of Controlled Release, 79(1), 71-79. DOI: 10.1016/s0168-3659(01)00507-7
Kale, R. & Tayade, P. (2007). A multiple unit floating drug delivery system of piroxicam using eudragit polymer. Indian Journal of Pharmaceutical Sciences, 69(1), 120-123. DOI: 10.4103/0250-474X.32124
Kamari, Y. & Ghiaci, M. (2016). Preparation and characterization of ibuprofen/ modified chitosan/TiO2 hybrid composite as a controlled drugdelivery system. Microporous Mesoporous Mater, 234, 361-369. DOI: 10.1016/j.micromeso.2016.07.030
Karami, Z., Sadighian, S., Rostamizadeh, K., Parsa, M. & Rezaee, S. (2016). Naproxen conjugated mPEG–PCL micelles for dual triggered drug delivery. Materials Science and Engineering C: Materials for Biological Applications, 61, 665-673. DOI: 10.1016/j.msec.2015.12.067
Katare, O., Vyasx, S. & Dixit, V. (1995). Enhanced in vivo performance of liposomal indomethacin derived from effervescent granule based proliposomes. Journal of Microencapsulation, 12(5), 487-493. DOI: 10.3109/02652049509006779
Kavitha, D., Sowjanya, J. N. & Panaganti, S. (2010). Pharmacosomes: an emerging vesicular system. International Journal of Pharmaceutical Sciences Review and Research, 5(3), 168-171.
Kenawy, E. R., Abdel-Hay, F. I., El-Newehy, M. H. & Wnek, G. E. (2007). Controlled release of ketoprofen from electrospun poly(vinyl alcohol) nanofibers. Materials Science and Engineering, 459(1-2), 390-396. DOI: 10.1016/j.msea.2007.01.039
Kim, B. S., Won, M., Yang, Lee, K. M. & Kim, C. S. (2008). In vitro permeation studies of nanoemulsions containing ketoprofen as a model drug. Drug Delivery, 15(7), 465-469. DOI: 10.1080/10717540802328599
Kramar, A., Turk, S. & Vrecer, F. (2003). Statistical optimisation of diclofenac sustained release pellets coated with polymethacrylic films. International Journal of Pharmaceutics, 256(1), 43-52. DOI: 10.1016/s0378-5173(03)00061-9
Kumar, R., Singh, A., Garg, N. & Siril, P. F. (2018). Solid lipid nanoparticles for the controlled delivery of poorly water soluble non-steroidal anti-inflammatory drugs. Ultrasonics Sonochemistry, 40(Pt A), 686-696. DOI: 10.1016/j.ultsonch.2017.08.018
Kurkuri, M. D. & Aminabhavi, T. M. (2004). Poly(vinyl alcohol) and poly(acrylic acid sequential interpenetrating network pH-sensitive microspheres for the delivery of diclofenac sodium to the intestine. Journal of Controlled Release, 96(1), 9-20. DOI: 10.1016/j.jconrel.2003.12.025
Kuznetsova, D. A., Vasileva, L. A., Gaynanova, G. A., Vasilieva, E. A., Lenina, O. A., Nizameev, I. R., Kadirov, M. K., Petrov, K. A., Zakharova, L. Y., Sinyashin, O. G. (2021). Cationic liposomes mediated transdermal delivery of meloxicam and ketoprofen: Optimization of the composition, in vitro and in vivo assessment of efficiency. International Journal of Pharmaceutics, 605, 120803. DOI: 10.1016/j.ijpharm.2021.120803
Khanal, S., Adhikari, U., Rijal, N., Bhattarai, S., Sankar, J. & Bhattarai, N. (2016). pH-Responsive PLGA nanoparticle for controlled payload delivery of diclofenac sodium. Journal of Functional Biomaterials, 7(3), 21-26. DOI: 10.3390/jfb7030021
Lins, L. C., Padoin, N., Pires, A.T. N. & Soares, C. (2015). Modeling ketoprofen release from PHB/chitosan composite microparticles. Polymer Bulletin, 73(6), 1515-1520. DOI: 10.1007/s00289-015-1559-1
Liu, S., Pan, G., Liu, G., Neves, J. D., Song, S., Chen, S., Cheng, B., Sun, Z., Sarmento, B., Cui, W. & Fan, C. (2017). Electrospun fibrous membranes featuring sustained release of ibuprofen reduce adhesion and improve neurological function following lumbar laminectomy. Journal of Controlled Release, 264, 1-13. DOI: 10.1016/j.jconrel.2017.08.011
Luppi, B., Bigucci, F., Zecchi, V. & Cerchiara, T. (2009). Gastroresistant microcapsules: new approaches for site-specific delivery of ketoprofen. Drug Delivery, 16(1), 24-29. DOI: 10.1080/10717540802481349
Macocinschi, D., Filip, D., Vlad, S.., Oprea, A. M. & Gafitanu, C. A. (2012). Characterization of a poly(ether urethane)-based controlled release membrane system for delivery of ketoprofen. Applied Surface Science, 259, 416-423. DOI: 10.1016/j.apsusc.2012.07.060
Mathew, S. T., Gayathri, Devi, S., Prasanth, V. & Vinod, B. (2009). Formulation and in vitro-in vivo evaluation of ketoprofen-loaded albumin microspheres for intramuscular administration. Journal of Microencapsulation, 26(5), 456-469. DOI: 10.1080/02652040802420367
Mbah, C., Ogbonna, J., Nzekwe, I., Ugwu, G., Ezeh, R., Builders, P., Attama, A., Adikwu, M., Ofoefule, S. (2021). Nanovesicle formulation enhances anti-inflammatory and safe use of piroxicam. Pharmaceutical Nanotechnology, 9(3), 177-190. DOI: 10.2174/2211738509666210129151844.
Melendez, O. H. I., Diaz, R. P., Alvarez-Lorenzo, C., Concheiro, A. & Bucio, E. (2014). Binary graft modification of polypropylene for anti-inflammatory drug-device combo products. Journal of Pharmaceutical Sciences, 103(4), 1269-1277. DOI: 10.1002/jps.23903
Morgado, P. I., Miguel, S. P., Correia, I. J. & Aguiar-Ricardo, A. (2017). Ibuprofen loaded PVA/chitosan membranes: a highly efficient strategy towards an improved skin wound healing. Carbohydrate Polymers, 159, 136-145. DOI: 10.1016/j.carbpol.2016.12.029
Nayak, A. K. & Pal, D. (2011). Development of pH-sensitive tamarind seed polysaccharide-alginate composite beads for controlled diclofenac sodium delivery using response surface methodology. International Journal of Biological Macromolecules, 49(4), 784-793. DOI: 10.1016/j.ijbiomac.2011.07.013
Paavola, A., Bernards, C. M. & Rosenberg, P. H. (2016). Controlled release ibuprofen poloxamer gel for epidural use - a pharmacokinetic study using microdialysis in pigs. European Journal of Pharmaceutics and Biopharmaceutics, 108, 180-186. DOI: 10.1016/j.ejpb.2016.09.006
Pang, J., Luan, Y., Li, F., Cai, X., Du, J. & Li, Z. (2011). Ibuprofen-loaded poly(lactic-coglycolic acid) films for controlled drug release. International Journal of Nanomedicine, 6, 659-665. DOI: 10.2147/IJN.S17011
Park, E. S., Cui, Y., Yun, B. J., Ko, I. J. & Chi, S. C. (2005). Transdermal delivery of piroxicam using microemulsions. Archives of Pharmacal Research, 28(2), 243-248. DOI: 10.1007/BF02977723
Park, J. W., Yun, Y. P., Park, K., Lee, J. Y., Kim, H. J., Kim, S. E. & Song, H. R. (2016). Ibuprofen-loaded porous microspheres suppressed the progression of monosodium iodoacetate-induced osteoarthritis in a rat model. Colloids and Surfaces, 147, 265-273. DOI: 10.1016/j.colsurfb.2016.07.050
Park, J. Y., Lee, I. H. ((2010). Controlled release of ketoprofen from electrospun porous polylactic acid (PLA) nanofibers. Journal of Polymer Research, 18, 1287-1291. DOI: 10.1007/s10965-010-9531-0
Paukkonen, H., Kunnari, M., Lauren, P., Hakkarainen, T., Auvinen, V. V., Oksanen, T., Koivuniemi, R., Yliperttula, M. & Laaksonen, T. (2017). Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release. International Journal of Pharmaceutics, 532(1), 269-280. DOI: 10.1016/j.ijpharm.2017.09.002
Petit, A., Sandker, M., Muller, B., Meyboom, R., van Midwoud, P., Bruin, P., Redout, E. M., Versluijs-Helder, M., van der Lest, C.H. A., Buwalda, S. J., de Leede, L.G. J., Vermonden, T., Kok, R. J., Weinans, H. & Hennink, W. E. (2014). Release behavior and intra-articular biocompatibility of celecoxib-loaded acetyl-capped PCLA-PEG-PCLA thermogels. Biomaterials, 35(27), 7919-7928. DOI: 10.1016/j.biomaterials.2014.05.064
Piao, Z. Z., Lee, M. K. & Lee, B. J. (2008). Colonic release and reduced intestinal tissue damage of coated tablets containing naproxen inclusion complex. International Journal of Pharmaceutics, 350(1), 205-211. DOI: 10.1016/j.ijpharm.2007.08.044
Rahmani Del Bakhshayesh, A., Akbarzadeh, A., Alihemmati, A., Tayefi Nasrabadi, H., Montaseri, A., Davaran, S., Abedelahi, A. (2020). Preparation and characterization of novel anti-inflammatory biological agents based on piroxicam-loaded poly-ε-caprolactone nano-particles for sustained NSAID delivery. Drug Delivery, 27(1), 269-282. DOI: 10.1080/10717544.2020.1716881
Rodrigues, M. R., Lanzarini, C. M. & Ricci-Junior, E. (2011). Preparation, in vitro characterization and in vivo release of naproxen loaded in poly-caprolactone nanoparticles. Pharmaceutical Development and Technology, 16(1), 12-21. DOI: 10.3109/10837450903460475
Saidi, L., Vilela, C., Oliveira, H., Silvestre, A. J. D. & Freire, C. S. R. (2017). Poly(N-methacryloyl glycine)/nanocellulose composites as pH-sensitive systems for controlled release of diclofenac. Carbohydrate Polymers, 169, 357-365. DOI: 10.1016/j.carbpol.2017.04.030
Salmoria, G. V., Paggi, R. A., Castro, F., Roesler, C.R. M., Moterle, D. & Kanis, L. A. (2016). Development of PCL/Ibuprofen tubes for peripheral nerve regeneration. Procedia CIRP, 49, 193-198. DOI: 10.1016/j.procir.2015.11.014
Sanli, O., Ay, N. & Isklan, N. (2007). Release characteristics of diclofenac sodium from poly(vinyl alcohol)/sodium alginate and poly(vinyl alcohol)-grafted-poly(acrylamide)/sodium alginate blend beads. European Journal of Pharmaceutics and Biopharmaceutics, 65(2), 204-214. DOI: 10.1016/j.ejpb.2006.08.004
Seetharaman, G., Kallar, A. R., Vijayan, V. M., Muthu, J. & Selvam, S. (2017). Design, preparation and characterization of pH-responsive prodrug micelles with hydrolyzable anhydride linkages for controlled drug delivery. Journal of Colloid and Interface Science, 492, 61-72. DOI: 10.1016/j.jcis.2016.12.070
Semalty, A., Semalty, M., Singh, D. & Rawat, M. (2010). Development and characterization of aspirin-phospholipid complex for improved drug delivery. International Journal of Pharmaceutical Sciences and Nanotechnology, 3(2), 940-947. DOI: 10.37285/ijpsn.2010.3.2.7
Sharma, P. (2008). Proniosome based drug delivery system of piroxicam. African Journal of Pharmacy and Pharmacology, 2(9), 184-190.
Sharma, R. K., Lalita, Singh, A. P. & Chauhan, G. S. (2014). Grafting of GMA and some comonomers onto chitosan for controlled release of diclofenac sodium. International Journal of Biological Macromolecules, 64, 368-376. DOI: 10.1016/j.ijbiomac.2013.12.028
Sharma, S. & Pawar, A. (2006). Low density multiparticulate system for pulsatile release of meloxicam. International Journal of Pharmaceutics, 313(1), 150-158. DOI: 10.1016/j.ijpharm.2006.02.001
Shende, P. K., Gaud, R. S., Bakal, R. & Patil, D. (2015). Effect of inclusion complexation of meloxicam with β-cyclodextrin- and β-cyclodextrin-based nanosponges on solubility, in vitro release and stability studies. Colloids and Surfaces B: Biointerfaces, 136,105-110. DOI: 10.1016/j.colsurfb.2015.09.002
Shi, Y., Liu, Z., Yang, Y., Xu, X., Li, Y. & Li, T. (2017). Design of poly(mPEGMA-coMAA) hydrogel-based mPEG-b-PCL nanoparticles for oral meloxicam delivery. Materials Science and Engineering C: Materials for Biological Applications, 76, 975-984. DOI: 10.1016/j.msec.2017.03.163
Sidney, L. E., Heathman, T.R. J., Britchford, E. R., Abed, A., Rahman, C. V. & Buttery, L. D. K. (2015). Investigation of localized delivery of diclofenac sodium from poly(D,L-lactic acid- co-glycolic acid)/poly(ethylene glycol) scaffolds using an in vitro osteoblast inflammation model. Tissue Engineering Part A, 21(1-2), 362-373. DOI: 10.1089/ten.TEA.2014.0100
Sousa, C. T., Nunes, C., Proenca, M. P., Leitao, D. C., Lima, J. R. S., Araujo, J. P. & Lucio, M. (2012). pH sensitive silica nanotubes as rationally designed vehicles for NSAIDs delivery. Colloids and Surfaces B: Biointerfaces, 94, 288-295. DOI: 10.1016/j.colsurfb.2012.02.003
Subramanian, N., Ray, S., Ghosal, S. K., Bhadra, R. & Moulik, S. P. (2004). Formulation design of self-microemulsifying drug delivery systems for improved oral bioavailability of celecoxib. Biological and Pharmaceutical Bulletin, 27(12), 1993-1999. DOI: 10.1248/bpb.27.1993
Sulistio, A., Reyes-Ortega, F., D’Souza, A. M., Ng, S. M. Y., Valade, D., Quinn, J. F., Donohue, A. C., Mansfeld, F., Blencowe, A., Qiao, G., Prankerd, R., Quirk, S., Whittaker, M. R., Davis, T. P. & Tait, R. J. (2017). Precise control of drug loading and release of an NSAID-polymer conjugate for long term osteoarthritis intra-articular drug delivery. Journal of Materials Chemistry B, 5(31), 6221-6226. DOI: 10.1039/c7tb01518f
Swamy, P., Areefulla, S., Shirs, S., Smitha, G. & Prashanth, B. (2007). Orodispersible tablets of meloxicam using disintegrant blends for improved efficacy. Indian Journal of Pharmaceutical Sciences, 69(6), 836-841. DOI: 10.4103/0250-474X.39448
Taepaiboon, P., Rungsardthong, U. & Supaphol, P. (2006). Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs. Nanotechnology, 17(9), 2317-2329. DOI: 10.1088/0957-4484/17/9/041
Tkalec, G., Knez, Z. & Novak, Z. (2016). pH sensitive mesoporous materials for immediate or controlled release of NSAID. Microporous and Mesoporous Mater, 224, 190-200. DOI: 10.1016/j.micromeso.2015.11.048
Tuncay, M., Calis, S., Kas, H., Ercan, M., Peksoy, I. & Hincal A. (2000). In vitro and in vivo evaluation of diclofenac sodium loaded album in microspheres. Journal of Microencapsulation, 17(2), 145-155. DOI: 10.1080/026520400288382
Thakkar, H., Sharma, R. K., Mishra, A. K., Chuttani, K. & Murthy, R. R. (2005). Albumin microspheres as carriers for the antiarthritic drug celecoxib. AAPS PharmSciTech, 6(1), E65-E73. DOI: 10.1208/pt060112
Thakkar, H., Sharma, R., Mishra, A., Chuttani, K. & Murthy, R. (2004). Efficacy of chitosan microspheres for controlled intra‐articular delivery of celecoxib in inflamed joints. Journal of Pharmacy and Pharmacology, 56(9), 1091-1099. DOI: 10.1211/0022357044166
Thanoo, B., Sunny, M. & Jayakrishnan, A. (1993). Oral sustained‐release drug delivery systems using polycarbonate microspheres capable of floating on the gastric fluid. Journal of Pharmacy and Pharmacology, 45(1), 21-24. DOI: 10.1111/j.2042-7158.1993.tb03672.x
Thing, M., Agardh, L., Larsen, S., Rasmussen, R., Pallesen, J., Mertz, N., Kristensen, J., Hansen, M., Ostergaard, J. & Larsen, C. S. (2014). A prodrug approach involving in situ depot formation to achieve localized and sustained action of diclofenac after joint injection. Journal of Pharmaceutical Sciences, 103(12), 4021-4029. DOI: 10.1002/jps.24221
Valenta, C., Wanka, M. & Heidlas, J. (2000). Evaluation of novel soya-lecithin formulations for dermal use containing ketoprofen as a model drug. Journal of Controlled Release, 63(1), 165-173. DOI: 10.1016/s0168-3659(99)00199-6
Vergote, G., Vervaet, C., Van Driessche, I., Hoste, S., De Smedt, S., Demeester, J., Jain, R., Ruddy, S. & Remon, J. P. (2002). In vivo evaluation of matrix pellets containing nanocrystalline ketoprofen. International Journal of Pharmaceutics, 240(1), 79-84. DOI: 10.1016/s0378-5173(02)00114-x
Veronese, F. M., Marsilio, F., Caliceti, P., De Filippis, P., Giunchedi, P. & Lora, S. (1998). Polyorganophosphazene microspheres for drug release: polymer synthesis, microsphere preparation, in vitro and in vivo naproxen release. Journal of Controlled Release, 52(3), 227-237. DOI: 10.1016/s0168-3659(97)00098-9
Villalba, B. T., Ianiski, F. R., Vogt, A. G., Pinz, M. P., Reis, A. S., Vaucher, R. A., Soares, M. P., Wilhelm, E. A. & Luchese, C. (2016). Polymeric nanocapsules as a technological alternative to reduce the toxicity caused by meloxicam in mice. Regulatory Toxicology and Pharmacology, 81(1), 316-321. DOI: 10.1016/j.yrtph.2016.09.023
Vyas, S. P., Singh, R. & Asati, R. (1995). Liposomally encapsulated diclofenac for sonophoresis induced systemic delivery. Journal of Microencapsulation, 12(2), 149-154. DOI: 10.3109/02652049509015285
Wang, S. H., Liang, Z. H. & Zeng, S. (2007). Monitoring release of ketoprofen enantiomers from biodegradable poly(D,L-lactide-co-glycolide) injectable implants. International Journal of Pharmaceutics, 337(1-2), 102-108. DOI: 10.1016/j.ijpharm.2006.12.031
Wu, C., Quan, J., Xie, J., Branford-White, C., Zhu, L., Yu, Y. & Wang, Y. (2010). Preparation and controlled release of degradable polymeric ketoprofen–saccharide conjugates. Polymer Bulletin, 67, 593-608. DOI: 10.1007/s00289-010-0409-4
Yamada, T., Onishi, H. & Machida, Y. (2001). Sustained release ketoprofen microparticles with ethylcellulose and carboxymethylethylcellulose. Journal of Controlled Release, 75(3), 271-282. DOI: 10.1016/s0168-3659(01)00399-6
Yar, M., Farooq, A., Shahzadi, L., Khan, A. S., Mahmood, N., Rauf, A., Chaudhry, A. A. & Ur Rehman, I. (2016). Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications. Materials Science and Engineering, 64, 148-156. DOI: 10.1016/j.msec.2016.03.072
Yuan, Y., Li, S. M., Mo, F. K. & Zhong, D. F. (2006). Investigation of microemulsion system for transdermal delivery of meloxicam. International Journal of Pharmaceutics, 321(1), 117-123. DOI: 10.1016/j.ijpharm.2006.06.021
Yüksel, N., Karataş, A., Özkan, Y., Savaşer, A., Özkan, S. A. & Baykara, T. (2003). Enhanced bioavailability of piroxicam using Gelucire 44/14 and Labrasol: in vitro and in vivo evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 56(3), 453-459. DOI: 10.1016/s0939-6411(03)00142-5
Zhang, Y., Cun, D., Kong, X. & Fang, L. (2014). Design and evaluation of a novel transdermal patch containing diclofenac and teriflunomide for rheumatoid arthritis therapy. Asian Journal of Pharmaceutical Sciences, 9(5), 251-259. DOI: 10.1016/j.ajps.2014.07.007