Tổng hợp vật liệu Fe3O4@SiO2 đính Fe0 và xử lý methyl blue trong nước
Abstract
This study aims to evaluate treatment ability of methyl blue (MB) dyes in water with Fe3O4@SiO2 attached Fe0 particles. The X-ray diffraction (XRD) technique was employed to characterize the structure of nanoparticles. The as-synthesized nanoparticles were analyzed by Fourier transform infrared spectroscopy (FTIR) technique to determine the presence of functional groups and bonds in the molecule. Surface morphology of as-synthesized Fe3O4@SiO2 nanoparticles was studied by scanning electron microscopy (TEM). The magnetic properties of Fe3O4 nanoparticles and Fe3O4@SiO2 attached Fe0 nanoparticles were evaluated by vibrating sample magnetometer technique (VSM). The as-synthesized material was in spherical shape with diameter of 100-500 nm, and its magnetism was 56.29 emu.g-1. The treatment of MB was conducted with 92.8% yield at pH 6.0 followed and fitted to pseudo-second order model and Langmuir isotherm adsoprtion model.
Tóm tắt
Nghiên cứu này nhằm đánh giá khả năng xử lý thuốc nhuộm methyl blue (MB) trong nước bằng hạt Fe3O4@SiO2 đính Fe0. Kỹ thuật nhiễu xạ tia X (XRD) được sử dụng để xác định đặc điểm cấu trúc của các hạt nano. Các hạt nano tổng hợp được phân tích bằng kỹ thuật quang phổ hồng ngoại biến đổi Fourier (FTIR) để xác định sự có mặt của các nhóm chức và các liên kết trong phân tử vật liệu hấp phụ (VLHP). Hình thái bề mặt của các hạt nano Fe3O4@SiO2 khi tổng hợp được nghiên cứu bằng kính hiển vi điện tử truyền qua (TEM). Tính chất từ của các hạt nano Fe3O4 và Fe3O4@SiO2 đính Fe0 được đánh giá bằng kỹ thuật từ kế mẫu rung (VSM). Vật liệu sau tổng hợp có dạng khối cầu và kích thước khoảng 100-500 nm với độ từ hóa 56,29 emu.g-1. Quá trình xử lý MB thu được hiệu suất 92,8% ở pH 6,0 và tuân theo mô hình động học giả kiến bậc 2 và mô hình hấp phụ đẳng nhiệt Langmuir.
Article Details
Tài liệu tham khảo
Abdulla-Al-Mamun, M., Kusumoto, Y., Zannat, T., Horie, Y., & Manaka, H. (2013). Au-ultrathin functionalized core–shell (Fe3O4@Au) monodispersed nanocubes for a combination of magnetic/plasmonic photothermal cancer cell killing. RSC advances, 3, 7816-7827.
Azam, K., Raza, R., Shezad, N., Shabir, M., Yang, W., Ahmad, N., Shafiq, I., Akhter, P., Razzaq, A., & Husain, M. (2020). Development of recoverable magnetic mesoporous carbon adsorbent for removal of methyl blue and methyl orange from wastewater. Journal of Environmental Chemical Engineering, 8(5), 104220.
Beg, M.S., Mohapatra, J., Pradhan, L., Patkar, D., & Bahadur, D. (2017). Porous Fe3O4-SiO2 core-shell nanorods as high-performance MRI contrast agent and drug delivery vehicle. Journal of Magnetism and Magnetic Materials, 428, 340-347.
Daas, A., & Hamdaoui, O. (2010). Extraction of anionic dye from aqueous solutions by emulsion liquid membrane. Journal of Hazardous Materials, 178(1-3), 973-981.
Dương Hiếu Đẩu, Lê Minh Tùng, Trần Hoàng Hải, & Lâm Văn Ngoán (2011). Tổng hợp hạt nano siêu thuận từ Fe3O4 và qui trình phủ lớp vỏ trên hạt nano Fe3O4. Tạp chí Khoa học Trường Đại học Cần Thơ, 19, 38-46.
Delnavaz, M., & Kazemimofrad, Z. (2020). Nano zerovalent iron (NZVI) adsorption performance on acidic dye 36 removal: Optimization of effective factors, isotherm and kinetic study. Environmental Progress & Sustainable Energy, 39(4), e13349-13361.
Dong, H., Zhao, F., He, Q., Xie, Y., Zeng. Y., Zhang, L., Tang, L., & Zeng, G. (2017). Physicochemical transformation of carboxymethyl cellulose-coated zero-valent iron nanoparticles (nZVI) in simulated groundwater under anaerobic conditions. Separation and Purification Technology, 175, 376-383.
Dupont, D., Brullot, W., Bloemen, M., Verbiest, T., & Binnemans K. (2014). Selective uptake of rare earths from aqueous solutions by EDTA-functionalized magnetic and nonmagnetic nanoparticles. ACS Applied Materials & Interfaces, 6(7), 4980-4988.
El-Gohary, F., & Tawfik, A. (2009). Decolorization and COD reduction of disperse and reactive dyes wastewater using chemical-coagulation followed by sequential batch reactor (SBR) process. Desalination, 249(3), 1159-1164.
El-Naas, M.H., Al-Muhtaseb, S.A., & Makhlouf, S. (2009). Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel. Journal of Hazardous Materials, 164, 720-725.
El-Shafei, M.M., Hamdy, A., & Hefny, M. (2018). Zero-valent iron nanostructures: synthesis, characterization and application. Journal of Environment & Biotechnology Research, 7, 1-10.
Fan, L., Luo, C., Li, X., Lu, F., Qiu, H., & Sun, M. (2012). Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. Journal of Hazardous Materials, 215, 272-279.
Feng, Z., Chen, N., Feng, C., & Gao, Y. (2018). Mechanisms of Cr(VI) removal by FeCl3-modified lotus stem-based biochar (FeCl3@ LS-BC) using mass-balance and functional group expressions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 551, 17-24.
Godiya, C.B., Xiao, Y., & Lu, X. (2020). Amine functionalized sodium alginate hydrogel for efficient and rapid removal of methyl blue in water. International Journal of Biological Macromolecules, 144, 671-681.
Gomes, H.T., Machado, B.F., Ribeiro, A., Moreira, I., Rosário, M., Silva, A.M.T., Figueiredo, J.L., & Faria, J.L. (2008). Catalytic properties of carbon materials for wet oxidation of aniline. Journal of Hazardous Materials, 159(2-3), 420-426.
Hermanson, G.T. (2013). Bioconjugate techniques (3rd ed.), Academic Press.
Hu, J., Chen, G., & Lo, I.M. (2005). Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles. Water Research, 39(18), 4528-4536.
Hu, J., Lo, I., & Chen, G. (2004). Removal of Cr (VI) by magnetite. Water Science and Technology, 50(12), 139-146.
Hui, C., Shen, C., Tian, J., Bao, L., Ding, H., Li, C., Tian, Y., Shi, X., & Gao, H. (2011). Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds. Nanoscale, 3, 701-705.
Koesnarpadi, S., Santosa, S.J., Siswanta, D., & Rusdiarso, B. (2015). Synthesis and characterizatation of magnetite nanoparticle coated humic acid (Fe3O4/HA). Procedia Environmental Sciences, 30, 103-108.
Ling, D., Hackett, M.J., & Hyeon, T. (2014). Surface ligands in synthesis, modification, assembly and biomedical applications of nanoparticles. Nano Today, 9(4), 457-477.
Lu, W., Li, J., Sheng, Y., Zhang, X., You, J., & Chen, L. (2017). One-pot synthesis of magnetic iron oxide nanoparticle-multiwalled carbon nanotube composites for enhanced removal of Cr(VI) from aqueous solution. Journal of Colloid and Interface Science, 505, 1134-1146.
Mahmoudi, M., Sant, S., Wang, B., Laurent, S., & Sen, T. (2011). Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Advanced Drug Delivery Reviews, 63(1-2), 24-46.
Mostafaei, M., Hosseini, S.N., Khatami, M., Javidanbardan, A., Sepahy, A.A., & Asadi, E. (2018). Isolation of recombinant Hepatitis B surface antigen with antibody-conjugated superparamagnetic Fe3O4/SiO2 core-shell nanoparticles. Protein Expression and Purification, 145, 1-6.
Nikmah, A., Taufiq, A., & Hidayat, A. (2019). Synthesis and Characterization of Fe3O4/SiO2 nanocomposites. IOP Conference Series: Earth and Environmental Science, 276, 012046-012055.
Oliveira, L.C.A., Petkowicz, D.I., Smaniotto, A., & Pergher, S.B.C. (2004). Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water. Water Research, 38(17), 3699-3704.
Qin, X., Zhang, H., Wang, Z., & Jin, Y. (2019). Fe3O4@SiO2 mesoporous spheres as Fe(ii) donors loaded with artemisinin and a photosensitizer to alleviate tumor hypoxia in PDT for enhanced anticancer therapy. New Journal of Chemistry, 43, 8761-8773.
Qin, Y., Wang, L., Zhao, C., Chen, D., Ma, Y., & Yang, W. (2016). Ammonium-functionalized hollow polymer particles as a pH-responsive adsorbent for selective removal of acid dye. ACS Applied Materials & Interfaces, 8(26), 16690-16698.
Rahman, Z.U., Zhang, T., Cui, S., & Wang, D. (2015). Preparation and characterization of magnetic nanocomposite catalysts with double Au nanoparticle layers. RSC Advances, 5(121), 99697-99705.
Rathnayake, S.I., Martens, W.N., Xi, Y., Frost, R.L., & Ayoko, G.A. (2017). Remediation of Cr(VI) by inorganic-organic clay. Journal of Colloid and Interface Science, 490, 163-173.
Shao, H., Qi, J., Lin, T., & Zhou, Y. (2018). Preparation and Characterization of Fe3O4@SiO2@ NMDP core-shell structure composite magnetic nanoparticles. Ceramics International, 44, 2255-2260.
Shen, L., Li, B., & Qiao, Y. (2018). Fe3O4 nanoparticles in targeted drug/gene delivery systems. Materials, 11(2), 324-352.
Shin, S., & Jang, J. (2007). Thiol containing polymer encapsulated magnetic nanoparticles as reusable and efficiently separable adsorbent for heavy metal ions. Chemical Communications, 41, 4230-4232.
Subhan, F., Aslam, S., Yan, Z., Khan, M., Etim, U., & Naeem, M. (2019). Effective adsorptive performance of Fe3O4@SiO2 core shell spheres for methylene blue: kinetics, isotherm and mechanism. Journal of Porous Materials, 26, 1465-1474.
Sun, D., Lu, P., Zhang, J., Liu, Y., & Ni, J. (2011). Synthesis of the Fe3O4@SiO2@SiO2-Tb(PABA)3 Luminomagnetic Microspheres. Journal of Nanoscience and Nanotechnology, 11(11), 9774-9779.
Tadesse, A., RamaDevi, D., Hagos, M., & Battu, G. (2018). Synthesis of nitrogen doped carbon quantum dots/magnetite nanocomposites for efficient removal of methyl blue dye pollutant from contaminated water. RSC Advances, 8(16), 8528-8536.
Tan, L., Xu, J., Xue, X., Lou, Z., Zhu, J., Baig, S.A., & Xu, X. (2014). Multifunctional nanocomposite Fe3O4@SiO2–mPD/SP for selective removal of Pb(ii) and Cr(vi) from aqueous solutions. RSC Advances, 4(86), 45920-45929.
Vilardi, G., Di Palma, L., & Verdone, N. (2018). On the critical use of zero valent iron nanoparticles and Fenton processes for the treatment of tannery wastewater. Journal of Water Process Engineering, 22, 109-122.
Wang, J., Zheng, S., Shao, Y., Liu, J., Xu, Z., & Zhu, D. (2010). Amino-functionalized Fe3O4@SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. Journal of Colloid and Interface Science, 349, 293-299.
Wang, S., Tang, J., Zhao, H., Wan, J., & Chen, K. (2014). Synthesis of magnetite–silica core–shell nanoparticles via direct silicon oxidation. Journal of Colloid and Interface Science, 432, 43-46.
Wu, T., Cai, X., Tan, S., Li, H., Liu, J., & Yang, W. (2011). Adsorption characteristics of acrylonitrile, p-toluenesulfonic acid, 1-naphthalenesulfonic acid and methyl blue on graphene in aqueous solutions. Chemical Engineering Journal, 173(1), 144-149.
Xiong, T., Yuan, X., Wang, H., Leng, L., Li, H., Wu, Z., Jiang, L., Xu, R., & Zeng, G. (2018). Implication of graphene oxide in Cd-contaminated soil: A case study of bacterial communities. Journal of Environmental Management, 205, 99-106.
Xu, J., Ju, C., Sheng, J., Wang, F., Zhang, Q., Sun, G., & Sun, M. (2013). Synthesis and characterization of magnetic nanoparticles and its application in lipase immobilization. Bulletin of the Korean Chemical Society, 34(8), 2408-2412.
Yang, L., Zhang, Y., Liu, X., Jiang, X., Zhang, Z., Zhang, T., & Zhang, L. (2014). The investigation of synergistic and competitive interaction between dye Congo red and methyl blue on magnetic MnFe2O4. Chemical Engineering Journal, 246, 88-96.
Yang, S., Zeng, T., Li, Y., Liu, J., Chen, Q., Zhou, J., Ye, Y., & Tang, B. (2015). Preparation of graphene oxide decorated Fe3O4@SiO2 nanocomposites with superior adsorption capacity and SERS detection for organic dyes. Journal of Nanomaterials, 16(1), 337-344.
Yavuz, C.T., Mayo, J.T., Yu, W.W., Prakash, A., Falkner, J.C., Yean, S., Cong, L., Shipley, H.J., Kan, M., Tomson, M., Natelson, D., & Colvin, V.L. (2006). Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science, 314(5801), 964-967.
Zhang, F., Lan, J., Yang, Y., Wei, T., Tan, R., & Song, W. (2013). Adsorption behavior and mechanism of methyl blue on zinc oxide nanoparticles. Journal of Nanoparticle Research, 15(11), 1-10.
Zhang, H., Li, S., Liu, Y., Yu, Y., Lin, S., Wang, Q., Miao, L., Wei, H., & Sun, W. (2020). Fe3O4@GO magnetic nanocomposites protect mesenchymal stem cells and promote osteogenic differentiation of rat bone marrow mesenchymal stem cells. Biomaterials Science, 8, 5984-5993.