Tổng hợp vật liệu nano Fe3O4@SiO2 cấu trúc lõi vỏ có độ từ hóa cao
Abstract
The main aim of this study is to synthesize and evaluate the physical chemistry, magnetic properties of Fe3O4 and Fe3O4@SiO2 core/shell nanoparticles using a simple and economical process. Fe3O4@SiO2 core/shell nanoparticles were synthesized from Fe3O4 nanoparticles formed by co-precipitation method and covered with SiO2 layer using silane molecules from tetraethyl orthosilicate (TEOS) as phase transition agent, and a strong base coating medium (NaOH). The results of X-ray diffraction analysis showed that Fe3O4 nanoparticles were high crystallinity. Analysis results of scanning electron microscopy and transmission electron microscopy showed that the obtained ferromagnetic nanoparticles had octagonal shape with fairly uniform size falling about 20 nm including SiO2 coating. Fourier modified infrared analysis for Fe3O4@SiO2 material showed that Si-O-Si, O-Si-O, Fe-O, Fe-O-Si peaks appear on the spectrum demonstrated the existence of silica on Fe3O4 nanoparticle surface. The superparamagnetic properties of the material was confirmed by the vibrating sample magnetometer results and the superparamagnetism (VSM) of Fe3O4 and Fe3O4@SiO2 90.54 emu/g and 68.42 emu/g, respectively.
Tóm tắt
Mục đích chính của nghiên cứu này là tổng hợp và đánh giá tính chất hóa lý, từ tính của vật liệu nano Fe3O4 và Fe3O4@SiO2 có cấu trúc lõi−vỏ, với quá trình thực hiện đơn giản, tiết kiệm. Vật liệu Fe3O4@SiO2 được tổng hợp từ hạt nano Fe3O4 được tạo thành bằng phương pháp đồng kết tủa và bao phủ bởi lớp SiO2 bằng cách sử dụng các phân tử silane từ tetraethyl orthosilicate (TEOS) làm tác nhân chuyển pha và môi trường phủ là một base mạnh (NaOH). Kết quả phân tích nhiễu xạ tia X cho thấy hạt nano Fe3O4 có độ kết tinh cao. Kết quả phân tích hiển vi điện tử quét và hiển vi điện tử truyền qua chỉ ra rằng hạt nano sắt từ thu được có hình khối bát giác với kích thước khá đồng đều khoảng 25 nm kể cả lớp phủ SiO2. Phân tích hồng ngoại biến đổi Fourier cho vật liệu Fe3O4@SiO2 thấy được các mũi Si-O-Si, O-Si-O, Fe-O, Fe-O-Si xuất hiện trên phổ đã minh chứng cho sự tồn tại của silica trên bề mặt hạt nano Fe3O4. Tính siêu thuận từ của vật liệu được khẳng định thông qua kết quả từ kế mẫu rung và độ từ hóa (VSM) của Fe3O4 và Fe3O4@SiO2 lần lượt là 90,54 emu/g và 68,42 emu/g.
Article Details
Tài liệu tham khảo
Abid, J.P., Wark, A.W., Brevet, P.F., & Girault, H.H. (2002). Preparation of silver nanopraticles in solution from a silver salt by laser irradiation. Chemical Communications, 7, 792-793.
Azgomi, N., & Mokhtary, M. (2015). Nano-Fe3O4@SiO2 supported ionic liquid as an efficient catalyst forthe synthesis of 1,3-thiazolidin-4-ones under solvent-free conditions. Journal of Molecular Catalysis A: Chemical, 398, 58-64.
Babes, L., Denizot, B., Tanguy, G., Le Jeune, J.J., & Jallet, P. (1999). Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. Journal of colloid and interface science, 212(2), 474-482.
Challagulla, S., Nagarjuna, R., Ganesan, R., & Roy, S. (2016). Acrylate–based polymerizable sol–gel synthesis of magnetically recoverable TiO2 supported Fe3O4 for Cr(VI) photoreduction in aerobic atmosphere. ACS Sustainable Chemistry & Engineering, 4, 974-982.
Chan, L.W., Lee, H.Y., & Heng, P.W. (2006). Mechanisms of external and internal gelation and their impact on the functions of alginate as a coat and delivery system. Carbohydrate Polymers, 63(2), 176-187.
Chen, W., Shen, H., Li, X., Jia, N., & Xu, J. (2006). Synthesis of immunomagnetic nanoparticles and their application in the separation and purification of CD34+ hematopoietic stem cells. Applied Surface Science, 253, 1762-1769.
Cheng, J., Tan, G., Li, W., Zhang, H., Wu, X., & Jin, Y. (2016). Facile synthesis of chitosan assisted multifunctional magnetic Fe3O4@SiO2@CS@pyropheophorbide – a flourescent nanoparticles for photodynamic therapy. New Journal of Chemistry, 10, 8522-8534.
Chi, Y., Yuan, Q., Li, Y., Tu, J., Zhao, L., Li, N., & Li, X. (2012). Synthesis of Fe3O4@SiO2 – Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol. Journal of colloid and interface science, 383(1), 96-102.
Choolaei, M., Rashidi, A.M., Ardjmanda, M., Yadegari, A., & Soltanian, H. (2012). The effect of nanosilica on the physical properties of oil well cement. Materials Science and Engineering A, 528, 288-294.
Copelloa, G.J., Mebert, A.M., Raineri, M., Pesenti, M.P., & Diaz, L.E. (2011). Removal of dyes from water using chitosan hydrogel/SiO2 and chitin hydrogel/SiO2 hybrid materials obtained by the sol–gel method. Journal of Hazardous Materials, 186, 932-939.
Da, R.N.P., Gajbhiye, N.S., & Balaji, G. (2001). Magnetic properties of interacting single domain Fe3O4 particles. Journal of Alloys and Compound, 326, 50-53.
Doan, T.K.D., Tran, H.H., Le, H.P., Bui, D.L., Le, K.V., & Phan, N.T. (2009). Preparation and characterization of magnetic nanoparticles with chitosan coating. Journal of Physics: Conference Series, 187, 1-6.
Du, G.H., Liu, Z.L., Xia, X., Chu, Q., & Zhang, S.M. (2006). Characterization and application of Fe3O4/SiO2 nanocomposites. The Journal of Sol-Gel Science and Technology, 39, 285-291.
Franzel, L., Bertino, M.F., Huba, Z.J., & Carpenter, E.E. (2012). Synthesis of magnetic nanoparticles by pulsed laser ablation. Applied Surface Science, 261, 332-336.
Gandhi, M.R., & Meenakshi, S. (2012). Preparation and characterization of silica gel/chitosan composite for the removal of Cu(II) and Pb(II). International Journal of Biological Macromolecules, 50, 650-657.
Guo, B., Sun, J., Hu, X., Wang, Y., Sun, Y., Hu, R., Yu, L., Zhao, H., & Zhu, J. (2019). Fe3O4-CoPx Nanoflowers Vertically Grown on TiN Nanoarrays as Efficient and Stable Electrocatalysts for Overall Water Splitting. ACS Applied Nano Materials, 2, 40-47.
Hariani, P.L., Faizal, M., Ridwan, Marsi, & Setiabudidaya, D. (2013). Synthesis and properties of Fe3O4 nanoparticles by Co-precipitation method to removal procion dyes. International Journal of Environmental Science and development, 4(3), 336-340.
Hou, Y., Han, X., Chen, J., Li, Z., Chen, X., & Gai, L. (2013). Isolation of PCR-ready genomic DNA from Aspergillus niger cells with Fe3O4/SiO2 microspheres. Separation and Purification Technology, 116, 101-106.
Karimzadeh, I., Aghazadeh, M., & Doroudi, T. (2016). Preparation and Characterization of Poly(Vinyl pyrrolidone)/Polyvinyl Chloride Coated Superparamagnetic Iron Oxide (Fe3O4) Nanoparticles for Biomedical Applications. Analytical And Bioanalytical Electrochemistry, 5, 604-614.
Khazaei, A., Khazaei, M., & Nasrollahzadeh, M. (2017). Nano-Fe3O4@SiO2 supported Pd(0) as a magnetically recoverable nanocatalyst for Suzuki coupling reaction in the presence of waste eggshell as low-cost natural base. Tetrahedron, 73, 5624–5633.
LaMer, V.K., & Dinegar, R.H. (1950). Theory, production and mechanism of formation of monodispersed hydrosols. Journal of the American Chemical Society, 72(11), 4847-4854.
Li, L., Lu, W., Ding, D., Dai, Z., Cao, C., Liu, L., & Chen, T. (2019). Adsorption properties of pyrene-functionalized nano-Fe3O4 mesoporous materials for uranium. Journal of Solid State Chemistry, 270, 666-673.
Lu, Y., Yin, Y., Mayers, B.T., & Xia, Y. (2002). Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol−Gel Approach. Nano Letters, 2, 183-186.
Mandel, K., Kolba, C., Straßer, M., Dembski, S., & Sextl, G. (2014). Size controlled iron oxide nano octahedra obtained via sonochemistry and natural ageing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 27-32.
Mascolo, M.C., Pei, Y., & Ring, T.A. (2013). Room temperature coprecipitation synthesis of magnetic nanoparticles in a large pH window with differrence bases. Materials, 6(12), 5549-5567.
Massart, R. (1981). Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE transactions on magnetics, 17(2), 1247-1248.
Mohammadi, R., & Kassaee, M.Z. (2013). Sulfochitosan encapsulated nano-Fe3O4 as an efficient and reusablemagnetic catalyst for green synthesis of 2-amino-4H-chromen-4-ylphosphonates. Journal of Molecular Catalysis A: Chemical, 380, 152–158.
Mou, X. Li, Y. Zhang, B., Yao, L., Wei, X., Su, D.S., & Shen, W (2012). Crystal-Phase- and Morphology-Controlled Synthesis of Fe2O3 Nanomaterials. European Journal of Inorganic Chemistry, 16, 2684-2690.
Nyiro-Kosa, I., Nagy, D.C., & Posfai, M. (2009). Size and shape control of precipitated magnetite nanoparticles. European Journal of Mineralogy, 21, 293-302.
Ramezanzadeh, B., Moradian, S., Tahmasebi, N., & Khosravi, A. (2011). Studying the role of polysiloxane additives and nano-SiO2 on the mechanical properties of a typical acrylic/melamine clearcoat. Progress in Organic Coatings, 72, 621-631.
Ranjbar, Z., Jannesari, A., Rastegar, S., & Montazeri. S. (2009). Study of the influence of nano-silica particles on the curing reactions of acrylic-melamine clear-coats. Progress in Organic Coatings, 66, 372-376.
Shao, D., Xia, A., Hu, J., Wang, C., & Yu, W. (2008). Monodispersed magnetite/silica composite microspheres: preparation and application for plasmid DNA purification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 322(1), 61-65.
Sharma, R.K., Monga, Y., & Puri, A. (2014). Magnetically separable silica@Fe3O4 core–shell supported nano-structured copper (II) composites as a versatile catalyst for the reduction of nitroarenes in aqueous midium at room temperature. Journal of Molecular Catalysis A: Chemical, 393, 84-95.
Shen, L., Li, B., & Qiao, Y. (2018). Fe3O4 Nanoparticles in Targeted Drug/Gene Delivery Systems. Materials, 11, 324-452.
Sheng-Nan, S., Chao, W., Zan-Zan, Z., Yang-Long, H., Venkatramana, S.S., & Zhi-Chuan, X. (2014). Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications. Chinese Physics B, 23(3), 1-19.
Shi, M., Liu, Y., Xu, M., Yang, H., Wu, C., & Miyoshi H. (2011). Core/Shell Fe3O4@SiO2 Nanoparticles Modified with PAH as a Vector for EGFP Plasmid DNA Delivery into HeLa Cells. Macromolecular Bioscience, 11(11), 1263-1569.
Shibu, E., Ono, K., Sugino, S., Nishioka, A., Yashuda, A., Shigeri, Y., Wakida, S., Sawada, M., & Biju, V. (2013). Photouncaging Nanoparticles for MRI and Fluorescence Imaging in Vitro and in Vivo. ACS Nano, 11, 9851-9859.
Shokri, Z., Zeynizadeh, B., Hosseini, S.A., & Azizi1, B. (2017). Magnetically nano core–shell Fe3O4@Cu(OH)x: a highly efficient and reusable catalyst for rapid and green reduction of nitro compounds. Journal of the Iranian Chemical Society, 14, 101–109.
Swanson, H.E., Morris, M.C., Stinchfield, R.P., & Evans, E.H. (1962). Standard X-ray diffraction powder patterns. National Bureau of Standards, United States Deparment of Commerve.
Tartaj, P., & Serna, C. (2002). Microemulsion-Assisted Synthesis of Tunable Superparamagnetic Composites. Chemistry of Matarials, 14, 4396-4402.
Trần Yến Mi, Dương Hiếu Đẩu & Lê văn Nhạn (2011). Khảo sát ảnh hưởng của nồng độ tiền chất lên kích thước và tính chất hạt nano oxide sắt từ Fe3O4. Tạp chí Khoa học Trường Đại học Cần Thơ, 20b, 272-280.
Wang, W.J., Cui, Q.Y., Qin, T., & Sun, H.H. (2018). Preparation of Fe3O4@SiO2@Chitosan for the adsorption of malachite green dye. Earth and Environmental Science, 186, 1-6.
Xu, N., Yan, H., Jiao, X., Jiang, L., Zhang, R., Wang, J., Liu, Z., Liu, Z., Gu, Y., Gang, F., Wang, X., Zhao, L., & Sun, X. (2020). Effect of OHˉ concentration on Fe3O4 nanoparticles morphologies supported by first principle calculation. Journal of Crystal Growth, 547, 125780-125787.
Zheng, Y.Y., Wang, X.B., Shang, L., Li, C.R., Cui, C., Dong, W.J., Tang, W.H. & Chen, B.Y. (2010). Fabrication of shape controlled Fe3O4 nanostructure. Materials Characterization, 61(4), 489-492.