Tổng hợp và khảo sát khả năng kháng khuẩn của nano bạc trong sơn nước nội thất
Abstract
In this study, spherical Ag nanoparticles (Ag NPs) with sizes of 8 – 12 nm as an antibacterial additive for indoor waterborne architectural coating have been successfully synthesized by chemical reduction method. This simple and environmentally friendly process is performed with a reducing agent and a protective agent that is glucose (concentration of 0.4%) and hydroxypropyl methylcellulose (HPMC_concentration of 0.01%), respectively. Next, nano silver solution was added to the paint before adding the emulsion resin. This method maintains the chemical and physical properties of the paint while enhancing the antimicrobial ability from nano silver in the paint. The effectiveness of nano silver as an antibacterial additive for emulsion paints was evaluated on Escherichia coli and Bacillus subtilis using an antibacterial ring method, respectively. The results showed that the emulsion paint was bactericidal with the nano silver content of 0.1 – 0.5 ppm in the paint. The antimicrobial effect of nano silver in the emulsion paint was maintained for a minimum period of 30 days.
Tóm tắt
Trong nghiên cứu này, hạt nano Ag (AgNPs) hình cầu với kích thước từ 8 – 12 nm đã được tổng hợp thành công bằng phương pháp khử hóa học để làm phụ gia kháng khuẩn cho sơn nhũ tương nội thất. Phương pháp đơn giản và thân thiện với môi trường này được tiến hành với tác nhân khử và chất bảo vệ là glucose (nồng độ 0,4%) và hydroxypropyl methylcellulose (HPMC với nồng độ 0,01%). Tiếp đến, dung dịch nano bạc được cho vào sơn trước khi thêm nhựa nhũ tương. Phương pháp này vẫn duy trì các tính chất lý hóa của sơn, đồng thời vẫn thêm khả năng kháng khuẩn của nano bạc trong sơn. Hiệu quả của nano bạc với vai trò phụ gia kháng khuẩn cho sơn nhũ tương được thử nghiệm lần lượt trên Escherichia coli và Bacillus subtilis thông qua phương pháp vòng kháng khuẩn. Kết quả cho thấy sơn nhũ tương có khả năng diệt khuẩn khi hàm lượng nano bạc trong sơn là 0,1 – 0,5 ppm. Hiệu quả kháng khuẩn của nano bạc trong sơn nhũ tương được duy trì trong khoảng thời gian tối thiểu là 30 ngày.
Article Details
Tài liệu tham khảo
Ahamed, M., AlSalhi, M. S., & Siddiqui, M. K. J. (2010). Silver nanoparticle applications and human health. Clinica Chimica Acta, 411(23), 1841-1848. doi: https://doi.org/10.1016/j.cca.2010.08.016
Boev, C., & Kiss, E. (2017). Hospital-acquired infections: current trends and prevention. Critical Care Nursing Clinics, 29(1), 51-65.
Bruchez, M., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A. P. (1998). Semiconductor Nanocrystals as Fluorescent Biological Labels. Science, 281(5385), 2013. doi: 10.1126/science.281.5385.2013
Cui, Y., Wei, Q., Park, H., & Lieber, C. M. (2001). Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species. Science, 293(5533), 1289. doi: 10.1126/science.1062711
Dileep, P., Jacob, S., & Narayanankutty, S. K. (2020). Functionalized nanosilica as an antimicrobial additive for waterborne paints. Progress in Organic Coatings, 142, 105574. doi: https://doi.org/10.1016/j.porgcoat.2020.105574
Dong, C., Zhang, X., & Cai, H. (2014). Green synthesis of monodisperse silver nanoparticles using hydroxy propyl methyl cellulose. Journal of Alloys and Compounds, 583(1), 267-271. doi: https://doi.org/10.1016/j.jallcom.2013.08.207
Fabrega, J., Luoma, S. N., Tyler, C. R., Galloway, T. S., & Lead, J. R. (2011). Silver nanoparticles: behaviour and effects in the aquatic environment. Environment international, 37(2), 517-531.
Furno, F., Morley, K. S., Wong, B., Sharp, B. L., Arnold, P. L., Howdle, S. M., . . . & Reid, H. J. (2004). Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? Journal of Antimicrobial Chemotherapy, 54(6), 1019-1024. doi: 10.1093/jac/dkh478
Jiang, D., Xie, J., Chen, M., Li, D., Zhu, J., & Qin, H. (2011). Facile route to silver submicron-sized particles and their catalytic activity towards 4-nitrophenol reduction. Journal of Alloys and Compounds, 509(5), 1975-1979.
Khan, Z., Hussain, J. I., Kumar, S., & Hashmi, A. A. (2011). Silver nanoplates and nanowires by a simple chemical reduction method. Colloids and Surfaces B: Biointerfaces, 86(1), 87-92.
Klasen, H. J. (2000). Historical review of the use of silver in the treatment of burns. I. Early uses. Burns, 26(2), 117-130. doi: https://doi.org/10.1016/S0305-4179(99)00108-4
Kumar, A., Vemula, P. K., Ajayan, P. M., & John, G. (2008). Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nature Materials, 7(3), 236-241. doi: 10.1038/nmat2099
Liu, J., Li, X., & Zeng, X. (2010). Silver nanoparticles prepared by chemical reduction-protection method, and their application in electrically conductive silver nanopaste. Journal of Alloys and Compounds, 494(1-2), 84-87.
Liu, L., Xu, X., Ye, Y., Ma, Y., Liu, Y., Lei, J., & Yin, N. (2012). Electrolysis synthetic silver nanoparticles enhanced light emission from CdSe quantum dots. Thin Solid Films, 526, 127-132.
Liu, Y., Chen, S., Zhong, L., & Wu, G. (2009). Preparation of high-stable silver nanoparticle dispersion by using sodium alginate as a stabilizer under gamma radiation. Radiation Physics and Chemistry, 78(4), 251-255.
Pauksch, L., Hartmann, S., Rohnke, M., Szalay, G., Alt, V., Schnettler, R., & Lips, K. S. (2014). Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts. Acta Biomaterialia, 10(1), 439-449. doi: https://doi.org/10.1016/j.actbio.2013.09.037
Popok, V., Stepanov, A., & Odzhaev, V. (2005). Synthesis of silver nanoparticles by the ion implantation method and investigation of their optical properties. Journal of Applied Spectroscopy, 72(2), 229-234.
Raveendran, P., Fu, J., & Wallen, S. L. (2006). A simple and “green” method for the synthesis of Au, Ag, and Au–Ag alloy nanoparticles. Green Chemistry, 8(1), 34-38.
Sharma, V. K., Yngard, R. A., & Lin, Y. (2009). Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 145(1), 83-96. doi: https://doi.org/10.1016/j.cis.2008.09.002
Shim, I.-K., Lee, Y. I., Lee, K. J., & Joung, J. (2008). An organometallic route to highly monodispersed silver nanoparticles and their application to ink-jet printing. Materials Chemistry and Physics, 110(2-3), 316-321.
Sun, Y., & Xia, Y. (2002). Shape-controlled synthesis of gold and silver nanoparticles. Science, 298(5601), 2176-2179.
Vitulli, G., Bernini, M., Bertozzi, S., Pitzalis, E., Salvadori, P., Coluccia, S., & Martra, G. (2002). Nanoscale copper particles derived from solvated Cu atoms in the activation of molecular oxygen. Chemistry of materials, 14(3), 1183-1186.
Wani, I. A., Ganguly, A., Ahmed, J., & Ahmad, T. (2011). Silver nanoparticles: ultrasonic wave assisted synthesis, optical characterization and surface area studies. Materials Letters, 65(3), 520-522.
Zuniga, J. M., & Cortes, A. (2020). The role of additive manufacturing and antimicrobial polymers in the COVID-19 pandemic. Expert Review of Medical Devices, 17(6), 477-481. doi: 10.1080/17434440.2020.1756771