Hồ Quốc Phong * , Võ Ngọc Gia Ngân , Huỳnh Liên Hương , Yasuaki Takagi , Lê Thị Minh Thủy Nguyễn Việt Bách

* Tác giả liên hệ (hqphong@ctu.edu.vn)

Abstract

The study was conducted to graft collagen extracted from catfish skin (Pangasiidae) onto surface of hydroxyapatite (HA) synthesized from catfish bone in order to increase its applications in biomedical field. After extracting from catfish skin, collagen was grafted onto the HA surface by using glutaraldehyde as a bridge. HA particles were firstly grafted to 3 - amino propyl triethoxysilane (APTES) to form amine functional groups on the surface. Glutaraldehyde was then used as bonding bridge to graft HA and collagen through the reaction between amine and aldehyde. Factors affecting the grafting efficiency such as collagen concentration, time and temperature of the reaction were investigated. Experimental results showed that solution of 1 mg/mL collagen,  reaction time of 3 hours and reaction temperature of 37°C are suitable conditions for grafting collagen onto surface of HA. In addition, the SEM images showed that size of HA particles was approximately 1,000 nm and covered by a layer of collagen after grafting.

Keywords: Collagen, hydroxyapatite, Biomedical materials, catfish bone, surface grafting

Tóm tắt

Nghiên cứu được tiến hành nhằm gắn kết collagen trích ly từ da cá tra (Pangasiidae) lên bề mặt hydroxyapatite (HA) tổng hợp từ xương cá tra làm tăng khả năng ứng dụng trong lĩnh vực y sinh. Sau khi trích ly, collagen được gắn kết lên bề mặt HA thông qua cầu nối glutaraldehyde. Các hạt HA trước tiên gắn kết với 3 – amino propyl triethoxysilane (APTES) tạo nhóm chức amine trên bề mặt. Glutaraldehyde là cầu nối gắn kết HA và collagen thông qua phản ứng giữa nhóm chức amine và aldehyde. Các yếu tố ảnh đến sự gắn kết như nồng độ collagen, pH dung dịch phản ứng, thời gian và nhiệt độ của phản ứng được tiến hành khảo sát. Kết quả thí nghiệm cho thấy nồng độ collagen 1 mg/mL, dung dịch acetic acid hòa tan collagen có pH 3, thời gian phản ứng 3 giờ và nhiệt độ phản ứng 37C là điều kiện thích hợp để tiến hành gắn kết. Ngoài ra, kết quả chụp SEM cho thấy rằng các hạt HA được chế tạo có kích thước khoảng 1.000 nm và bị phủ một lớp collagen sau khi gắn kết.

Từ khóa: Collagen, gắn kết bề mặt, hydroxyapatite, vật liệu y sinh, xương cá tra

Article Details

Tài liệu tham khảo

Azami, M., Rabiee, M., & Moztarzadeh, F. (2010). Glutaraldehyde crosslinked gelatin/hydroxyapatite nanocomposite scaffold, engineered via compound techniques. Polymer Composites, 31(12), 2112-2120.

Barakat, N. A. M., Khalil, K. A., Sheikh, F. A., Omran, A. M., Gaihre, B., Khil, S. M., & Kim, H. Y. (2008). Physiochemical characterizations of hydroxyapatite extracted from bovine bones by three different methods: Extraction of biologically desirable HAp. Materials Science and Engineering: C, 28(8), 1381-1387.

Barth, A., & Zscherp, C. (2002). What vibrations tell about proteins. Quarterly reviews of biophysics, 35(4), 369-430.

Chang, M. C., & Tanaka, J. (2002). FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials, 23(24), 4811-4818.

Chen, W., Cao, Y., Liu, M., Zhao, Q., Huang, J., Zhang, H., . . . Zhang, Z. (2012). Rotavirus capsid surface protein VP4-coated Fe3O4 nanoparticles as a theranostic platform for cellular imaging and drug delivery. Biomaterial, 33(31), 7895-7902.

Coates, J. (2006). Interpretation of infrared spectra, a practical approach. Encyclopedia of analytical chemistry: applications, theory.

Goonasekera, C. S., Jack, K. S., Cooper-White, J. J., & Grøndahl, L. (2013). Attachment of poly (acrylic acid) to 3-aminopropyltriethoxysilane surface-modified hydroxyapatite. Journal of Materials Chemistry B, 1(42), 5842-5852.

Kikuchi, M., Ikoma, T., Itoh, S., Matsumoto, H. N., Koyama, Y., Takakuda, K., ... & Tanaka, J. (2004). Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen. Composites Science and Technology64(6), 819-825.

Meroni, D., Lo Presti, L., Di Liberto, G., Ceotto, M., Acres, R. G., Prince, K. C., ... & Ardizzone, S. (2017). A close look at the structure of the TiO2-APTES interface in hybrid nanomaterials and its degradation pathway: An experimental and theoretical study. The Journal of Physical Chemistry C121(1), 430-440.

Mostafa, N. Y. (2005). Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes. Materials Chemistry and Physics, 94(2–3), 333-341.

Sadat-Shojai, M., Khorasani, M.-T., Dinpanah-Khoshdargi, E., & Jamshidi, A. (2013). Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta biomaterialia, 9(8), 7591-7621.

Sato, K., Kumagai, Y., & Tanaka, J. (2000). Apatite formation on organic monolayers in simulated body environment. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, 50(1), 16-20.

Singh, P., Benjakul, S., Maqsood, S., & Kishimura, H. (2011). Isolation and characterisation of collagen extracted from the skin of striped catfish (Pangasianodon hypophthalmus). Food Chemistry, 124, 97–105.

Sionkowska, A., & Kozłowska, J. (2013). Properties and modification of porous 3-D collagen/hydroxyapatite composites. International journal of biological macromolecules, 52, 250-259.

Sobczak, A., Kowalski, Z., & Wzorek, Z. (2009). Preparation of hydroxyapatite from animal bones. Acta of Bioengineering and Biomechanics, 11(4), 23-28.

Song, Y.-Y., Hildebrand, H., & Schmuki, P. (2010). Optimized monolayer grafting of 3-aminopropyltriethoxysilane onto amorphous, anatase and rutile TiO2. Surface Science, 604(3-4), 346-353.

Traub, W., Arad, T., & Weiner, S. (1989). Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers. Proceedings of the National Academy of Sciences, 86(24), 9822-9826.

Yoshimura, M., & Byrappa, K. (1994). Hydrothermal processing of hydroxyapatite: past, present, and future. Journal of Materials Science, 43(7), 2085-2103.

Zeeman, R., Feijen, J., & Dijkstra, P. J. (1998). Cross-linking of collagen-based materials: Department of Chemical Engineering, University of Twente.

Zhang, L., Tang, P., Xu, M., Zhang, W., Chai, W., & Wang, Y. (2010). Effects of crystalline phase on the biological properties of collagen–hydroxyapatite composites. Acta biomaterialia, 6(6), 2189-2199.

Zhang, Y., Lu, J., & Yang, S. (2012). Preparation of hydroxyapatite ceramic through centrifugal casting process using ultra-fine spherical particles as precursor and its decomposition at high temperatures. Journal of Advanced Ceramics, 1(1), 60-65.