Lương Huỳnh Vủ Thanh * , Nguyễn Ngọc Yến , Nguyễn Thị Cẩm Tiên , Trần Nguyễn Phương Lan , Cao Lưu Ngọc Hạnh Ngô Trương Ngọc Mai

* Người chịu trách nhiệm về bài viết: Lương Huỳnh Vủ Thanh (email: lhvthanh@ctu.edu.vn)

Abstract

This study aimed to synthesize and characterize Fe3O4@SiO2 nanoparticles with a core-shell structure functionalized with chitosan. Fe3O4 nano particles were firstly synthesized by the co-precipitation method and then covered with SiO2 by using a silane compound derived from tetraethyl orthosilicate (TEOs) used as a reagent for phase transition with an advantage of high bioadaptability with silica dioxide shell. The nanoparticles covered with silica dioxide were funtionalized with chitosan, a polymer with bioadaptable characteristics highly applied for biomedical. The result of X-ray analysis of nanoparticles Fe3O4 showed a high crystalline structure and the result of particle morphology using a vibrating sample magnetometer and transmission electron microscope (TEM) analysis presented that the particles were in the shape of octahedral nanoparticles and the particle size including SiO2 shell was about 20 nm. Fourier transform infrared spectroscopy of Fe3O4@SiO2/CTS showed that the apperance of peaks of C–O, N–H, C–H bonding illustrated the presence of chitosan on the surface of Fe3O4@SiO2 after the functionalizing step. The result of a vibrating sample magnetometer determined super-paramegnetic properties of the as-synthesized material and the saturation magnetization value (Ms) of Fe3O4, Fe3O4@SiO2, and Fe3O4@SiO2/CTS was 92.64 emu/g, 56.97 emu/g, 52.43 emu/g, respectively.

Keywords: Chitosan, core – shell Fe3O4@SiO2, nano Fe3O4

Tóm tắt

Nghiên cứu này tổng hợp và đánh giá tính chất hóa lý, từ tính của vật liệu nano Fe3O4@SiO2 có cấu trúc (core–shell) được chức năng hóa với chitosan. Hạt nano Fe3O4 trước tiên được tạo thành bằng phương pháp đồng kết và bao phủ bởi lớp SiO2 bằng cách sử dụng các phân tử silane từ tetraethyl othorsilicate (TEOs) làm tác nhân chuyển pha có ưu điểm tương thích sinh học cao của lớp vỏ silica tạo thành. Hạt nano Fe3O4 sau khi bọc silica được chức năng hóa với chitosan là một polymer có tính tương thích sinh học cao được ứng dụng rộng rãi trong các lĩnh vực y sinh. Kết quả phân tích nhiễu xạ tia X, TEM và từ kế mẫu rung cho thấy hạt nano Fe3O4 có độ kết tinh cao và hạt nano sắt từ thu được có hình khối bát giác với kích thước vào khoảng 20 nm kể cả lớp phủ SiO2. Phân tích hồng ngoại biến đổi Fourier (FT-IR) cho vật liệu Fe3O4@SiO2/CTS thấy được các mũi C-O, N-H, C-H xuất hiện trên phổ minh chứng cho sự tồn tại của chitosan trên bề mặt hạt nano Fe3O4@SiO2 đã chức năng hóa. Kết quả từ kế mẫu rung khẳng định tính siêu thuận từ của vật liệu và độ từ hóa của Fe3O4, Fe3O4@SiO2 và Fe3O4@SiO2/CTS lần lượt là 92,64 emu/g, 56,97 emu/g, 52,43 emu/g.

Từ khóa: Chitosan, core – shell Fe3O4@SiO2, nano Fe3O4

Article Details

Tài liệu tham khảo

Challagulla, S., Nagarjuna, R., Ganesan, R., & Roy, S. (2016). Acrylate–based polymerizable sol–gel synthesis of magnetically recoverable TiO2 supported Fe3O4 for Cr(VI) photoreduction in aerobic atmosphere. ACS Sustainable Chemistry & Engineering, 4, 974-982.

Chen, W., Shen, H., Li, X., Jia, N., & Xu, J. (2006). Synthesis of immunomagnetic nanoparticles and their application in the separation and purification of CD34+ hematopoietic stem cells. Applied Surface Science, 253, 1762-1769.

Cheng, J., Tan, G., Li, W., Zhang, H., Wu, X., Wang, Z., & Jin, Y. (2016). Facile synthesis of chitosan assisted multifunctional magnetic Fe3O4@SiO2@CS@pyropheophorbide–a flourescent nanoparticles for photodynamic therapy. New Journal of Chemistry, 40, 8522-8534.

Copelloa, G.J., Mebert, A.M., Raineri, M., Pesenti, M.P., & Diaz, L.E. (2011). Removal of dyes from water using chitosan hydrogel/SiO2 and chitin hydrogel/SiO2 hybrid materials obtained by the sol–gel method. Journal of Hazardous Materials, 186, 932-939.

Da, R.N.P., Gajbhiye, N.S., & Balaji, G. (2001). Magnetic properties of interacting single domain Fe3O4 particles. Journal of Alloys and Compound, 326, 50-53.

Doan, T.K.D., Tran, H.H.. Le, H.P., Bui, D.L., Le, K.V.. & Phan, N.T. (2009). Preparation and characterization of magnetic nanoparticles with chitosan coating. Journal of Physics: Conference Series, 187, 1-6.

Du, G.H., Liu Z.L., Xia, X., Chu Q., & Zhang, S.M. (2006). Characterization and application of Fe3O4/SiO2 nanocomposites. The Journal of Sol-Gel Science and Technology, 39, 285-291.

Faiyas, A.P.A., Vinod, E.M., Joseph, J., Ganesan, R., & Pandey, R.K. (2010). Dependence of pH and surfactant effect in the synthesis of magnetite (Fe3O4) nanoparticles and its properties. Journal of Magnetism and Magnetic Materials, 322, 400-404.

Gandhi, M.R., & Meenakshi, S. (2012). Preparation and characterization of silica gel/chitosan composite for the removal of Cu(II) and Pb(II). International Journal of Biological Macromolecules, 50, 650-657.

Guo, B., Sun, J., Hu, X., Wang, Y., Sun, Y., Hu, R., Yu, L., Zhao, H., &Zhu, J. (2019). Fe3O4-CoPx Nanoflowers Vertically Grown on TiN Nanoarrays as Efficient and Stable Electrocatalysts for Overall Water Splitting. ACS Applied Nano Materials, 2, 40-47.

Hariani, P.L., Faizal, M., Ridwan, Marsi, & Setiabudidaya, D. (2013). Synthesis and properties of Fe3O4 nanoparticles by Co-precipitation method to removal procion dyes. International Journal of Environmental Science and development, 4(3), 336-340.

Jiang, Y., Cai, W., Tu, W., & Zhu, M. (2019). Facile Cross-Link Method To Synthesize Magnetic Fe3O4@SiO2−Chitosan with High Adsorption Capacity toward Hexavalent Chromium. Journal of Chemical & Engineering Data, 64, 226-233.

Karimzadeh, I., Aghazadeh M., & Doroudi, T. (2016). Preparation and Characterization of Poly(Vinyl pyrrolidone)/Polyvinyl Chloride Coated Superparamagnetic Iron Oxide (Fe3O4) Nanoparticles for Biomedical Applications. Analytical & Bioanalytical Electrochemistry, 5, 604-614.

Khiabani, S.S., Farshbaf, M., Akbarzadeh, A., & Davaran, S. (2017). Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy. Artificial Cells, Nanomedicine, and Biotechnology, 45, 6-17.

Kousalya, G.N.,  Gandhi M.R., & Meenakshi, S. (2010). Sorption of chromium(VI) using modified forms of chitosan beads. International Journal of Biological Macromolecules, 47, 308-315.

Lê Thị Thu Hương (2018). Nghiên cứu và đánh giá hiệu quả tác động của hệ nano đa chức năng (polymer-drug-Fe3O4-folate) lên tế bào ung thư (Luận án tiến sĩ). Học viện khoa học và công nghệ.

Lu, Y., Yin, Y., Mayers, B.T., & Xia, Y. (2002). Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol−Gel Approach. Nano Letters 2, 183-186.

Mandel, K., Kolba, C., Straßer, M., Dembski S., & Sextl, G. (2014). Size controlled iron oxide nano octahedra obtained via sonochemistry and natural ageing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 27-32.

Mou, X., Li, Y., Zhang, B., Yao, L., Wei, X., Su, D.S., & Shen, W. (2012). Crystal-Phase- and Morphology-Controlled Synthesis of Fe2O3 Nanomaterials. European Journal of Inorganic Chemistry, 16, 2684-2690.

Nyiro-Kosa, I., Nagy, D.C., & Posfai, M. (2009). Size and shape control of precipitated magnetite nanoparticles. European Journal of Mineralogy, 21, 293-302.

Pham, X.N., Nguyen, T.P., Pham, T.N., Tran, T.T.N., & Tran, T.V.T. (2016). Synthesis and characterization of chitosan-coated magnetite nanoparticles and their application in curcumin drug delivery. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(4), 045010-045018.

Reddy, D.H.K., & Lee, S.M. (2013). Application of magnetic chitosan composite for the removal of toxic metal and dyes from aqueous solutions. Advanes in Colloid and Interface Science, 201-202, 68-93.

Sharma, R.K., Monga, Y., & Puri, A. (2014). Magnetically separable silica@Fe3O4 core–shell supported nano-structured copper (II) composites as a versatile catalyst for the reduction of nitroarenes in aqueous midium at room temperature. Journal of Molecular Catalysis A: Chemical, 393, 84-95.

Shen, L., Li, B., & Qiao, Y. (2018). Fe3O4 Nanoparticles in Targeted Drug/Gene Delivery Systems. Materials, 11, 324-452.

Shibu, E.S., Ono, K., Sugino, S., Nishioka, A., Yasuda, A., Shigeri, Y., Wakida, S., Sawada, M., & Biju, V. (2013). Photouncaging Nanoparticles for MRI and Fluorescence Imaging in Vitro and in Vivo. ACS Nano, 11, 9851-9859.

Swanson, H.E.,  Morris, M.C., Stinchfield, R.P., & Evans, E.H. (1962). Standard X-ray diffraction powder patterns. National Bureau of Standards, United States Deparment of Commerve.

Tartaj, P., & Serna, C. (2002). Microemulsion-Assisted Synthesis of Tunable Superparamagnetic Composites. Chemistry of Matarials, 14, 4396-4402.

Wang, W.J., Cui, Q.Y., Qin, T., & Sun, H.H. (2018). Preparation of Fe3O4@SiO2@Chitosan for the adsorption of malachite green dye. Earth and Environmental Science, 186, 1-6.

Wei, W., Quan, Z., & Xingwang, Z. (2013). Synthesis of chitosan/Fe3O4/SiO2 nanocomposites and investigation into their catalysis properties. Acta Chimica Sinica, 71(3), 387-391.

Wu, J.H., Ko, S.P., Liu, H.L., Kim, S., Ju, J.S., & Kim, Y.K. (2007). Sub 5 nm magnetite nanoparticles: Synthesis, microstructure, and magnetic properties. Materials letter, 61, 3124-3129.

Xu, N., Yan, H., Jiao, X., Jiang, L., Zhang, R., Wang, J., Liu, Z., Liu, Z., Gu, Y., Gang, F., Wang, X., Zhao, L., & Sun, X. (2020). Effect of OH- concentration on Fe3O4 nanoparticle morphologies supported by first principle calculation. Journal of Crystal Growth, 547, 125780-125787.

Zhang, Y., Liu, J.Y., Ma, S., Zhang, Y.J., Zhao, X., Zhang, X.D., & Zhang, Z.D. (2010). Synthesis of PVP–coated ultra–small Fe3O4 nanopaticle as a MRI contrast agent. Journal of Materials Science: Materials in Medicine, 21, 1205-1210.

Zheng, Y.Y., Wang, X.B., Shang, L., Li, C.R., Cui, C., Dong, W.J., Tang, W.H., & Chen, B.Y. (2010). Fabrication of shape controlled Fe3O4 nanostructure. Materials Characterization, 61(4), 489-492.