Ảnh hưởng của nhiệt độ đến động học quá trình sấy cà chua bi đen (Solanum lycopersicum cv. OG) trong điều kiện chân không
Abstract
Tóm tắt
Article Details
Tài liệu tham khảo
Akpinar, E. K. (2010). Drying of mint leaves in a solar dryer and under open sun: modelling, performance analyses. Energy Conversion and Management, 51(12), 2407-2418. https://doi.org/10.1016/j.enconman.2010.05.005
Alda, L. M., Gogoasa, I., Bordean, D.M., Gerden, I., Alda, S., Moldovan, C., & Nita, L. (2009). Lycopene content of tomatoes and tomato products. Journal of Agroalimentary Processes and Technologies, 15(4), 540-542.
An, K., Li, H., Zhao, D., Ding, S., Tao, H., & Wang, Z. (2013). Effect of osmotic dehydration with pulsed vacuum on hot-air drying kinetics and quality attributes of cherry tomatoes. Drying
Technology, 31(6), 698-706. https://doi.org/10.1080/07373937.2012.755192
Arévalo-Pinedo, A., & Murr, F. E. X. (2007). Influence of pre-treatments on the drying kinetics during vacuum drying of carrot and pumpkin. Journal of Food Engineering, 80(1), 152-156. https://doi.org/10.1016/j.jfoodeng.2006.05.005
Bhagwat, V. R. (2019). Safety of water used in food production. In R. L. Singh, & S. Mondal (Eds). Food Safety and Human Health (pp. 219-247). Academic Press. https://doi.org/10.1016/C2017-0-04079-X
Bruce, D. M. (1985). Exposed-layer barley drying: three models fitted to new data up to 150 C. Journal of Agricultural Engineering Research, 32(4), 337-348. https://doi.org/10.1016/0021-8634(85)90098-8
Crank, J. (1979). The mathematics of diffusion. Oxford University Press. 414pages.
Doymaz, I. (2006). Drying kinetics of black grapes treated with different solutions. Journal of Food Engineering, 76(2), 212-217. https://doi.org/10.1016/j.jfoodeng.2005.05.009
Ford, N. A., & Erdman, J. W. (2012). Are lycopene metabolites metabolically active?. Acta Biochimica Polonica, 59(1). https://doi.org/10.18388/abp.2012_2159
Giri, S. K., & Prasad, S. (2007). Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-airdried mushrooms. Journal of Food Engineering, 78(2), 512-521. https://doi.org/10.1016/j.jfoodeng.2005.10.021
Gunhan, T., Demir, V., Hancioglu, E., & Hepbasli, A. (2005). Mathematical modelling of drying of bay leaves. Energy Conversion and Management, 46(11-12), 1667-1679.
Ha, H. T. N., & Thuy, N. M. (2020a). Effect of thermal treatment on quality of black cherry tomatoes (Solanum lycopersicumcv. OG): Optimization of the blanching parameters. International Journal of Agronomy and Agricultural Research, 16(4), 1-10.
Ha, H. T. N., & Thuy, N. M. (2020b). Optimization of vacuum infiltration before blanching of black cherry tomatoes (Solanum lycopersicum cv. OG) using response surface methodology. Food Research, 4(4), 1317-1325. https://doi.org/10.26656/fr.2017.4(4).100
Henderson, S. M., & Pabis, S. (1961). Grain drying theory I: Temperature effect on drying coefficient. Journal of AgriculturalEngineering Research. 7, 85-89.
Henderson, S. M. (1974). Progress in developing the thin layer drying equation. Transactions of American Society of Agricultural Engineers, 17(6), 1167-1172.
Ilahy, R., Hdider, C., & Tlili, I. (2009). Bioactive compounds and antioxidant activity of tomato high lycopene content advanced breeding lines. The African Journal of Plant Science and Biotechnology, 3(1), 1-6.
Jaya, S., & Das, H. (2003). A vacuum drying model for mango pulp. Drying Technology, 21(7, 1215-1234. https://doi.org/10.1081/DRT-120023177
Kaur, H., Chauhan, S., & Sandhir, R. (2011). Protective effect of lycopene on oxidative stress and cognitive decline in rotenone induced model of Parkinson’s disease. Neurochemical Research, 36(8), 1435-1443. https://doi.org/10.1007/s11064-011-0469-3
Li, H., Deng, Z., Liu, R., Young, J. C., Zhu, H., Loewen, S., & Tsao, R. (2011). Characterization of phytochemicals and antioxidant activities of a purple tomato (Solanum lycopersicumL.). Journal of Agricultural and Food Chemistry, 59(21), 11803-11811. https://doi.org/10.1021/jf202364v
Lila, M.A. (2004). Anthocyanins and human health: an in vitro investigative approach. Journal of Biomedicine and Biotechnology, 2004(5), 306-313.
Michailidis, P. A., & Krokida, M. K. (2014). Drying and dehydration processes in food preservation and processing. Conventional and Advanced Food Processing Technologies, 1-32. https://doi.org/10.1002/9781118406281.ch1
Min, J. Y., & Min, K. B. (2014). Serum lycopene, lutein and zeaxanthin, and the risk of Alzheimer's disease mortality in older adults. Dementia and Geriatric Cognitive Disorders, 37(3-4), 246-256. https://doi.org/10.1159/000356486
Mordente, A. L. V. A. R. O., Guantario, B., Meucci, E., Mordente, A. L. V. A. R. O., Guantario, B., Meucci, E., Silvestrini, A., Lombardi, E., E Martorana, G., ... & Bohm, V. (2011). Lycopene and cardiovascular diseases: an update. Current Medicinal Chemistry, 18(8), 1146-1163. https://doi.org/10.2174/092986711795029717
Overhults, D. G., White, G. M., Hamilton, H. E., & Ross, I. J. (1973). Drying soybeans with heated air. Transactions of the ASAE, 16(1),112. https://doi.org/10.13031/2013.37459
Page, G. E. (1949). Factors influencing the maximum rates of airdrying shelled corn in thin layers. M.S. thesis. Department ofMechanical Engineering, Purdue University, Purdue, USA.
Phạm Văn Sổ và BùiThị NhưThuận (1991). Kiểm nghiệm lương thực, thực phẩm. Trường ĐH Bách khoa Hà Nội.
Sanjuán, N., Lozano, M., García‐Pascual, P., & Mulet, A. (2003). Dehydration kinetics of red pepper (Capsicum annuumL var Jaranda). Journal of the Science of Food and Agriculture, 83(7), 697-701. https://doi.org/10.1002/jsfa.1334
Sharaf-Eldeen, Y. I., Blaisdell, J. L.,& Hamdy, M.Y. (1980). A model for ear corn drying. Transactions of the ASAE, 5(4), 1261-1265.
Thakor, N. J., Sokhansanj, S., Sosulski, F. W., & Yannacopoulos, S. (1999). Mass and dimensional changes of single canola kernels during drying. Journal of Food Engineering, 40(3), 153-160. https://doi.org/10.1016/S0260-8774(99)00042-4
Thorat, I. D., Mohapatra, D., Sutar, R.F., Kapdi, S. S., & Jagtap, D. D. (2012). Mathematical modeling and experimental study on thin-layer vacuum drying of ginger (Zingiber officinaleR.) slices. Food and Bioprocess Technology, 5(4), 1379-1383. https://doi.org/10.1007/s11947-010-0429-y
Toğrul, İ. T., & Pehlivan, D. (2002). Mathematical modelling of solar drying of apricots in thin layers. Journal of Food Engineering, 55(3), 209-216. https://doi.org/10.1016/S0260-8774(02)00065-1
Wang, Z. F., Fang, S. Z., & Hu, X. S. (2009). Effective diffusivities and energy consumption of whole fruit Chinese jujube (Zizyphus jujubaMiller) in microwave drying. Drying Technology, 27(10), 1097-1104. https://doi.org/10.1080/07373930903221200
Wu, L., Orikasa, T., Ogawa, Y., & Tagawa, A. (2007). Vacuum drying characteristics of eggplants. Journal of Food Engineering, 83(3), 422-429. https://doi.org/10.1016/j.jfoodeng.2007.03.030
Yaldiz, O., Ertekin, C., & Uzun, H.I. (2001). Mathematical modeling of thin layer solar drying of sultana grapes. Energy, 26(5), 457-465. https://doi.org/10.1016/S0360-5442(01)00018-4
Yaldýz, O., & Ertekýn, C. (2001). Thin layer solar drying of some vegetables. Drying Technology, 19(3-4), 583-597. https://doi.org/10.1081/DRT-100103936
Yılmaz, F. M., Yüksekkaya, S., Vardin, H., & Karaaslan, M. (2017). The effects of drying conditions on moisture transfer and quality of pomegranate fruit leather (pestil). Journal of the Saudi Society of Agricultural Sciences, 16(1), 33-40. https://doi.org/10.1016/j.jssas.2015.01.003
Zarein, M., Samadi, S. H., & Ghobadian, B. (2015). Investigation of microwave dryer effect on energy efficiency during drying of apple slices. Journal of the Saudi Society of Agricultural Sciences, 14(1), 41-47. https://doi.org/10.1016/j.jssas.2013.06.002
Zhang, W., Xie, F., Lan, X., Gong, S., & Wang, Z. (2018). Characteristics of pectin from black cherry tomato waste modified by dynamic high-pressure microfluidization. Journal of Food Engineering, 216, 90-97. https://doi.org/10.1016/j.jfoodeng.2017.07.032