Hồ Thị Ngân Hà * Nguyễn Minh Thủy

* Tác giả liên hệ (htnha@agu.edu.vn)

Abstract

Vacuum drying is an advanced method widely used in the processing of dried fruit and vegetable products. In this study, the effect of four temperatures (40oC, 50oC, 60oC, and 70oC) at a constant vacuum level of -700 mmHg (corresponding to an absolute pressure of 60 mmHg) on the kinetics of moisture ratio change of black cherry tomatoes (Solanum lycopersicum cv. OG) were investigated. The suitable model for describing the vacuum drying process was chosen by fitting eight commonly used drying models (Lewis, Page, modified Page, Henderson and Pabis, logarithmic, two-term, two-term exponential, modified Henderson and Pabis). The effective moisture diffusivity and activation energy were calculated using the Fick’s diffusion equation. The results showed that increasing drying temperature accelerated the vacuum drying process and the goodness of fit tests indicated that the suggested logarithmic model gave the best fit to experimental data among the eight tested drying models. The everage effective moisture diffusivity values varied from 3,9028.10-10 to 1,7580.10-9 m2/s over the temperature range. The temperature dependence of the effective moisture diffusivity for the vacuum drying of the black cherry tomato samples was satisfactorily described by an Arrhenius-type relationship with activation energy value of 38.69 kJ/mol within 40 to 70oC.
Keywords: Activation energy, black cherry tomato, mathematical model, moisture diffusivity, vacuum drying

Tóm tắt

Sấy chân không là một phương pháp tiên tiến được sử dụng rộng rãi trong chế biến các sản phẩm rau quả. Trong nghiên cứu này, ảnh hưởng của bốn nhiệt độ sấy khác nhau (40oC, 50oC, 60oC và 70oC) ở mức chân không cố định là -700 mmHg (tương ứng với áp suất tuyệt đối 60 mmHg) đến động học biến đổi tỷ lệ ẩm của trái cà chua bi đen (Solanum lycopersicum cv. OG) đã được khảo sát. Tám mô hình sấy thông dụng (Lewis, Page, Page điều chỉnh, Henderson và Pabis, logarit, hai tham số, hàm mũ hai tham số, Henderson và Pabis điều chỉnh) được kiểm tra để chọn ra mô hình phù hợp. Độ khuếch tán ẩm hiệu quả và năng lượng hoạt hóa được tính toán bằng phương trình khuếch tán Fick. Kết quả cho thấy nhiệt độ sấy tăng đã thúc đẩy quá trình sấy chân không diễn ra nhanh hơn và mô hình logarit được chứng minh là phù hợp nhất với các dữ liệu thực nghiệm trong số tám mô hình thử nghiệm. Giá trị độ khuếch tán ẩm hiệu quả dao động từ 3,9028.10-10 đến 1,7580.10-9  m2/s trong phạm vi nhiệt độ khảo sát. Sự phụ thuộc nhiệt độ của độ khuếch tán ẩm hiệu quả tuân theo phương trình Arrhenius với giá trị năng lượng hoạt hóa là 38,69 kJ/mol trong khoảng nhiệt độ 40-70oC.
Từ khóa: Cà chua bi đen, Độ khuếch tán ẩm, Mô hình toán học, Năng lượng hoạt hóa, Sấy chân không

Article Details

Tài liệu tham khảo

Akpinar, E. K. (2010). Drying of mint leaves in a solar dryer and under open sun: modelling, performance analyses. Energy Conversion and Management, 51(12), 2407-2418. https://doi.org/10.1016/j.enconman.2010.05.005

Alda, L. M., Gogoasa, I., Bordean, D.M., Gerden, I., Alda, S., Moldovan, C., & Nita, L. (2009). Lycopene content of tomatoes and tomato products. Journal of Agroalimentary Processes and Technologies, 15(4), 540-542.

An, K., Li, H., Zhao, D., Ding, S., Tao, H., & Wang, Z. (2013). Effect of osmotic dehydration with pulsed vacuum on hot-air drying kinetics and quality attributes of cherry tomatoes. Drying

Technology, 31(6), 698-706. https://doi.org/10.1080/07373937.2012.755192

Arévalo-Pinedo, A., & Murr, F. E. X. (2007). Influence of pre-treatments on the drying kinetics during vacuum drying of carrot and pumpkin. Journal of Food Engineering, 80(1), 152-156. https://doi.org/10.1016/j.jfoodeng.2006.05.005

Bhagwat, V. R. (2019). Safety of water used in food production. In R. L. Singh, & S. Mondal (Eds). Food Safety and Human Health (pp. 219-247). Academic Press. https://doi.org/10.1016/C2017-0-04079-X

Bruce, D. M. (1985). Exposed-layer barley drying: three models fitted to new data up to 150 C. Journal of Agricultural Engineering Research, 32(4), 337-348. https://doi.org/10.1016/0021-8634(85)90098-8

Crank, J. (1979). The mathematics of diffusion. Oxford University Press. 414pages.

Doymaz, I. (2006). Drying kinetics of black grapes treated with different solutions. Journal of Food Engineering, 76(2), 212-217. https://doi.org/10.1016/j.jfoodeng.2005.05.009

Ford, N. A., & Erdman, J. W. (2012). Are lycopene metabolites metabolically active?. Acta Biochimica Polonica, 59(1). https://doi.org/10.18388/abp.2012_2159

Giri, S. K., & Prasad, S. (2007). Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-airdried mushrooms. Journal of Food Engineering, 78(2), 512-521. https://doi.org/10.1016/j.jfoodeng.2005.10.021

Gunhan, T., Demir, V., Hancioglu, E., & Hepbasli, A. (2005). Mathematical modelling of drying of bay leaves. Energy Conversion and Management, 46(11-12), 1667-1679.

Ha, H. T. N., & Thuy, N. M. (2020a). Effect of thermal treatment on quality of black cherry tomatoes (Solanum lycopersicumcv. OG): Optimization of the blanching parameters. International Journal of Agronomy and Agricultural Research, 16(4), 1-10.

Ha, H. T. N., & Thuy, N. M. (2020b). Optimization of vacuum infiltration before blanching of black cherry tomatoes (Solanum lycopersicum cv. OG) using response surface methodology. Food Research, 4(4), 1317-1325. https://doi.org/10.26656/fr.2017.4(4).100

Henderson, S. M., & Pabis, S. (1961). Grain drying theory I: Temperature effect on drying coefficient. Journal of AgriculturalEngineering Research. 7, 85-89.

Henderson, S. M. (1974). Progress in developing the thin layer drying equation. Transactions of American Society of Agricultural Engineers, 17(6), 1167-1172.

Ilahy, R., Hdider, C., & Tlili, I. (2009). Bioactive compounds and antioxidant activity of tomato high lycopene content advanced breeding lines. The African Journal of Plant Science and Biotechnology, 3(1), 1-6.

Jaya, S., & Das, H. (2003). A vacuum drying model for mango pulp. Drying Technology, 21(7, 1215-1234. https://doi.org/10.1081/DRT-120023177

Kaur, H., Chauhan, S., & Sandhir, R. (2011). Protective effect of lycopene on oxidative stress and cognitive decline in rotenone induced model of Parkinson’s disease. Neurochemical Research, 36(8), 1435-1443. https://doi.org/10.1007/s11064-011-0469-3

Li, H., Deng, Z., Liu, R., Young, J. C., Zhu, H., Loewen, S., & Tsao, R. (2011). Characterization of phytochemicals and antioxidant activities of a purple tomato (Solanum lycopersicumL.). Journal of Agricultural and Food Chemistry, 59(21), 11803-11811. https://doi.org/10.1021/jf202364v

Lila, M.A. (2004). Anthocyanins and human health: an in vitro investigative approach. Journal of Biomedicine and Biotechnology, 2004(5), 306-313.

Michailidis, P. A., & Krokida, M. K. (2014). Drying and dehydration processes in food preservation and processing. Conventional and Advanced Food Processing Technologies, 1-32. https://doi.org/10.1002/9781118406281.ch1

Min, J. Y., & Min, K. B. (2014). Serum lycopene, lutein and zeaxanthin, and the risk of Alzheimer's disease mortality in older adults. Dementia and Geriatric Cognitive Disorders, 37(3-4), 246-256. https://doi.org/10.1159/000356486

Mordente, A. L. V. A. R. O., Guantario, B., Meucci, E., Mordente, A. L. V. A. R. O., Guantario, B., Meucci, E., Silvestrini, A., Lombardi, E., E Martorana, G., ... & Bohm, V. (2011). Lycopene and cardiovascular diseases: an update. Current Medicinal Chemistry, 18(8), 1146-1163. https://doi.org/10.2174/092986711795029717

Overhults, D. G., White, G. M., Hamilton, H. E., & Ross, I. J. (1973). Drying soybeans with heated air. Transactions of the ASAE, 16(1),112. https://doi.org/10.13031/2013.37459

Page, G. E. (1949). Factors influencing the maximum rates of airdrying shelled corn in thin layers. M.S. thesis. Department ofMechanical Engineering, Purdue University, Purdue, USA.

Phạm Văn Sổ và BùiThị NhưThuận (1991). Kiểm nghiệm lương thực, thực phẩm. Trường ĐH Bách khoa Hà Nội.

Sanjuán, N., Lozano, M., García‐Pascual, P., & Mulet, A. (2003). Dehydration kinetics of red pepper (Capsicum annuumL var Jaranda). Journal of the Science of Food and Agriculture, 83(7), 697-701. https://doi.org/10.1002/jsfa.1334

Sharaf-Eldeen, Y. I., Blaisdell, J. L.,& Hamdy, M.Y. (1980). A model for ear corn drying. Transactions of the ASAE, 5(4), 1261-1265.

Thakor, N. J., Sokhansanj, S., Sosulski, F. W., & Yannacopoulos, S. (1999). Mass and dimensional changes of single canola kernels during drying. Journal of Food Engineering, 40(3), 153-160. https://doi.org/10.1016/S0260-8774(99)00042-4

Thorat, I. D., Mohapatra, D., Sutar, R.F., Kapdi, S. S., & Jagtap, D. D. (2012). Mathematical modeling and experimental study on thin-layer vacuum drying of ginger (Zingiber officinaleR.) slices. Food and Bioprocess Technology, 5(4), 1379-1383. https://doi.org/10.1007/s11947-010-0429-y

Toğrul, İ. T., & Pehlivan, D. (2002). Mathematical modelling of solar drying of apricots in thin layers. Journal of Food Engineering, 55(3), 209-216. https://doi.org/10.1016/S0260-8774(02)00065-1

Wang, Z. F., Fang, S. Z., & Hu, X. S. (2009). Effective diffusivities and energy consumption of whole fruit Chinese jujube (Zizyphus jujubaMiller) in microwave drying. Drying Technology, 27(10), 1097-1104. https://doi.org/10.1080/07373930903221200

Wu, L., Orikasa, T., Ogawa, Y., & Tagawa, A. (2007). Vacuum drying characteristics of eggplants. Journal of Food Engineering, 83(3), 422-429. https://doi.org/10.1016/j.jfoodeng.2007.03.030

Yaldiz, O., Ertekin, C., & Uzun, H.I. (2001). Mathematical modeling of thin layer solar drying of sultana grapes. Energy, 26(5), 457-465. https://doi.org/10.1016/S0360-5442(01)00018-4

Yaldýz, O., & Ertekýn, C. (2001). Thin layer solar drying of some vegetables. Drying Technology, 19(3-4), 583-597. https://doi.org/10.1081/DRT-100103936

Yılmaz, F. M., Yüksekkaya, S., Vardin, H., & Karaaslan, M. (2017). The effects of drying conditions on moisture transfer and quality of pomegranate fruit leather (pestil). Journal of the Saudi Society of Agricultural Sciences, 16(1), 33-40. https://doi.org/10.1016/j.jssas.2015.01.003

Zarein, M., Samadi, S. H., & Ghobadian, B. (2015). Investigation of microwave dryer effect on energy efficiency during drying of apple slices. Journal of the Saudi Society of Agricultural Sciences, 14(1), 41-47. https://doi.org/10.1016/j.jssas.2013.06.002

Zhang, W., Xie, F., Lan, X., Gong, S., & Wang, Z. (2018). Characteristics of pectin from black cherry tomato waste modified by dynamic high-pressure microfluidization. Journal of Food Engineering, 216, 90-97. https://doi.org/10.1016/j.jfoodeng.2017.07.032