Đặng Long Quân * , Huỳnh Dương Ngọc Ái Trân Phan Diễm Trinh

* Tác giả liên hệ (dlquan@ctu.edu.vn)

Abstract

Carbon nanotubes were activated by a mixture of nitric acid and sulfuric acid (volume ratio 1:1) with different time and temperatures. The platinum-ruthenium electrocatalyst material (PtRu) based on activated carbon nanotubes (CNTs) was synthesized by chemical reduction method. The precursors H2PtCl6 and RuCl3 were used with the efficient reduction of NaBH4 agent in ethylene glycol. Analytical methods such as X-ray diffraction, transmission electron microscopy, and cyclic voltammetry were used for analysis and evaluation. The results showed that PtRu nanoparticles on activated CNTs were successfully synthesized. The PtRu/CNTs sample using activated carbon nanotubes for five hours at 50oC was the highest methanol oxidation ability.
Keywords: Carbon nanotubes, direct methanol fuel cell, electrocatalyst material, PtRu nanoparticles

Tóm tắt

Trong nghiên cứu này, ống nano carbon (CNTs) được hoạt hóa bằng hỗn hợp nitric acid (HNO3) và sulfuric acid (H2SO4) tỉ lệ 1:1 về thể tích với thời gian và nhiệt độ khác nhau. Sau đó, vật liệu xúc tác điện cực platinum- ruthenium trên nền ống nano carbon hoạt hóa (PtRu/CNTs) được chế tạo bằng phương pháp khử hóa học. Các tiền chất H2PtCl6 và RuCl3 đã được sử dụng, với dung dịch ethylene glycol (EG) kết hợp với NaBH4 làm chất khử. Thành phần hóa học của các mẫu được xác định bằng phổ nhiễu xạ tia X (XRD), hình ảnh trực quan của các hạt nano PtRu bám trên bề mặt CNTs được chỉ ra bởi ảnh chụp từ kính hiển vi điện tử truyền qua (TEM), và phép đo điện hóa cyclic voltammetry (CV) được sử dụng để phân tích và đánh giá khả năng oxy hóa methanol của các mẫu nghiên cứu. Kết quả đo phổ XRD và ảnh TEM cho thấy, các hạt xúc tác nano PtRu đã được tổng hợp thành công trên nền CNTs với kích thước hạt tương đối đồng nhất. Đặc biệt, phổ CV cho thấy có sự khác biệt lớn về khả năng oxy hóa methanol giữa các mẫu nghiên cứu. Trong đó, mẫu xúc tác PtRu/CNTs sử dụng ống nano carbon hoạt hóa trong 5 giờ ở nhiệt độ 50oC cho khả năng xúc tác oxy hóa methanol cao nhất.
Từ khóa: Hạt xúc tác nano PtRu, ống nano carbon, pin nhiên liệu methanol, vật liệu xúc tác điện cực

Article Details

Tài liệu tham khảo

Sharma, S., and Pollet, B.G., 2012. Support materials for PEMFC and DMFC electrocatalysts - A review. Journal of Power Sources. 208: 96–119.

Karim, N.A., Kamarudin, S.K., Shyuan, L.K., Yaakob, Z., Daud, W.R.W., and Kadhum, A.A.H., 2015. Study on the electronic properties and molecule adsorption of W18O49nanowires as a catalyst support in the cathodes of direct methanol fuel cells. Journal of Power Sources. 288: 461–472.

Wang, L., Yuan, Z., Wen, F., Cheng, Y., Zhang, Y., and Wang, G., 2018. A bipolar passive DMFC stack for portable applications. Energy. 144: 587–593.

Chen, R., and Zhao, T.S., 2005. Mathematical modeling of a passive-feed DMFC with heat transfer effect. Journal of Power Sources.152: 122–130.

Gwak, G., Lee, K., Ferekh, S., Lee, S., and Ju, H. 2015. Analyzing the effects of fluctuating methanol feed concentration in active-type direct methanol fuel cell (DMFC) systems. International Journal of Hydrogen Energy. 40(15): 5396–5407.

Gong, L., Yang, Z., Li, K., Xing, W., Liu, C., and Ge, J., 2018. Recent development of methanol electrooxidation catalysts for direct methanol fuel cell. Journal of Energy Chemistry. 27: 1618–1628.

Yan, X.H., Gao, P., Zhao, G., Shi, L., Xu, J.B., and Zhao, T.S., 2017. Transport of highly concentrated fuel in direct methanol fuel cells. Applied Thermal Engineering. 126: 290–295.

Kwon, J.M., Kim, Y.J., and Cho, H.J., 2011. High-efficiency active DMFC system for portable applications. IEEE Transactions on Power Electronics. 26: 2201–2209.

Li, X., and Faghri, A., 2013. Review and advances of direct methanol fuel cells (DMFCs) Part I: Design, fabrication, and testing with high concentration methanol solutions. Journal of Power Sources. 226: 223–240.

Huang, H., and Wang, X., 2014. Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. Journal of Materials Chemistry A.2: 6626–6291.

Mehmood, A., Scibioh, M.A., Prabhuram, J., An, M.G., and Ha, H.Y., 2015. A review on durability issues and restoration techniques in long-term operations of direct methanol fuel cells. Journal of Power Sources.297: 224–241.

Nakashima, N., 2019. Carbon Nanotube-Based Direct Methanol Fuel Cell Catalysts. In: Nanocarbons for Energy Conversion: Supramolecular Approaches. Nanostructure Science and Technology. Springer, Cham, pp. 29-43.

Jung, N., Chung, D. Y., Ryu, J., Yoo, S. J., and Sung, Y. E., 2014. Pt-based nanoarchitecture and catalyst design for fuel cell applications. Nano Today. 9(4): 433-456.

Luo, Y., and Alonso-Vante, N., 2015. The effect of support on advanced Pt-based cathodes towards the oxygen reduction reaction. State of the art. Electrochimica Acta. 179: 108-118.

Shao, Y., Yin, G., Gao, Y., and Shi, P., 2006. Durability study of Pt∕ C and Pt∕ CNTs catalysts under simulated PEM fuel cell conditions. Journal of the Electrochemical Society. 153(6): A1093-A1097.

Li, W., Liang, C., Zhou, W., Qiu, et al.,2003. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. The Journal of Physical Chemistry B. 107(26): 6292-6299.

Tian, Z. Q., Jiang, S. P., Liang, Y. M., and Shen, P. K., 2006. Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications. The Journal of Physical Chemistry B. 110(11): 5343-5350.

Li, W., Liang, C., Qiu, Zhou, J., et al.,2002. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon. 40(5): 787-790.

Li, L., and Xing, Y., 2008. Electrochemical durability of carbon nanotubes at 80 C. Journal of Power Sources. 178(1): 75-79.

Li, L., and Xing, Y., 2006. Electrochemical durability of carbon nanotubes in noncatalyzed and catalyzed oxidations. Journal of the Electrochemical Society. 153(10): A1823-A1828.

Kongkanand, A., Kuwabata, S., Girishkumar, G., and Kamat, P., 2006. Single-wall carbon nanotubes supported platinum nanoparticles with improved electrocatalytic activity for oxygen reduction reaction. Langmuir. 22(5): 2392-2396.

Wang, X., Li, W., Chen, Z., Waje, M., and Yan, Y., 2006. Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. Journal of Power Sources. 158(1): 154-159.

Zhang, S., Shao, Y., Yin, G., and Lin, Y., 2010. Carbon nanotubes decorated with Pt nanoparticles via electrostatic self-assembly: a highly active oxygen reduction electrocatalyst. Journal of Materials Chemistry. 20(14): 2826-2830.

Li, W., Liang, C., Qiu, J., et al.,2004. Multi-walled carbon nanotubes supported Pt-Fe cathodic catalyst for direct methanol fuel cell. Reaction Kinetics and Catalysis Letters. 82(2): 235-240.

Li, W., Wang, X., Chen, Z., Waje, M., and Yan, Y., 2006. Pt−Ru supported on double-walled carbon nanotubes as high-performance anode catalysts for direct methanol fuel cells. The Journal of Physical Chemistry B. 110(31): 15353-15358.

Liu, Z., Lin, X., Lee, J. Y., Zhang, W., Han, M., and Gan, L. M., 2002. Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells. Langmuir. 18(10): 4054-4060.

Baglio, V., Di Blasi, A., D’Urso, et al., 2008. Development of Pt and Pt–Fe catalysts supported on multiwalled carbon nanotubes for oxygen reduction in direct methanol fuel cells. Journal of the Electrochemical Society. 155(8): B829-B833.

Dipti, S. S., Chung, U. C., and Chung, W. S., 2007. Characteristics of the carbon nanotubes supported Pt− Ni and Ni electrocatalysts for DMFC. Metals and Materials International. 13(3): 257-260.

Hsu, N. Y., Chien, C. C., and Jeng, K. T., 2008. Characterization and enhancement of carbon nanotube-supported PtRu electrocatalyst for direct methanol fuel cell applications. Applied Catalysis B: Environmental. 84(1-2): 196-203.

Matsumoto, T., Komatsu, T., Arai, K., et al., 2004. Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes. Chemical Communications. 7: 840-841.

Prabhuram, J., Zhao, T. S., Liang, Z. X., and Chen, R., 2007. A simple method for the synthesis of PtRu nanoparticles on the multi-walled carbon nanotube for the anode of a DMFC. Electrochimica Acta. 52(7): 2649-2656.

Seo, Y. K., Kim, Y. H., Chung, U. C., and Chung, W. S., 2007. Various types of Pt-Ni binary catalysts supported on the carbon nanotubes as cathode catalysts for DMFC. In Solid State Phenomena. 119: 247-250.

Winjobi, O., Zhang, Z., Liang, C., and Li, W., 2010. Carbon nanotube supported platinum–palladium nanoparticles for formic acid oxidation. Electrochimica Acta. 55(13): 4217-4221.

Yang, C., Wang, D., Hu, X., Dai, C., and Zhang, L., 2008. Preparation and characterization of multi-walled carbon nanotube (MWCNTs)-supported Pt-Ru catalyst for methanol electrooxidation. Journal of alloys and compounds. 448(1-2): 109-115.

Yoo, E., Okada, T., Kizuka, T., and Nakamura, J., 2008. Effect of carbon substrate materials as a Pt–Ru catalyst support on the performance of direct methanol fuel cells. Journal of Power Sources. 180(1): 221-226.

Zhao, Y., Fan, L., Ren, J., and Hong, B., 2014. Electrodeposition of Pt–Ru and Pt–Ru–Ni nanoclusters on multi-walled carbon nanotubes for direct methanol fuel cell. International Journal of Hydrogen Energy. 39(9): 4544-4557.