Điều kiện tối ưu và đối ngẫu cho bài toán tối ưu đa trị sử dụng đạo hàm đa trị Clarke theo hướng nón
Abstract
Tóm tắt
Article Details
Tài liệu tham khảo
Anh,N.L.H., 2016. Mixed type duality for set-valued optimization problems via higher-order radial epiderivatives. Numerical Functional Analysis and Optimization. 37(7): 823–838.
Arora,R. and Lalitha,C.S., 2005. Proximal proper efficiency in set-valued optimization.Omega -The International Journal of Management Science. 33(5): 407–411.
Aubin,J.P. and Frankowska,H., 1990. Set-Valued Analysis. Birkhäuser, Boston, 461 pages.
Chen,C.R., Li,S.J. and Teo,K.L., 2009. Higher order weak epiderivatives and applications to duality and optimality conditions. Computers & Mathematics with Applications. 57(8): 1389–1399.
Clarke,F.H., 1983. Optimization and nonsmooth analysis.John Wiley, New York, 321 pages.
Corley,H.W., 1988. Optimality conditions for maximizations of set-valued functions. Journal of Optimization Theory and Application. 58(1): 1–10.
Jahn,J., 2009. Vector Optimization. Springer, Berlin, 481 pages.
Jahn,J. and Khan,A.A., 2002. Generalized contingent epiderivative in set-valued optimization: Optimality conditions. Numerical Functional Analysis and Optimization. 23(7–8): 807–831.
Khan,A.A., Tammer,C. and Zănilescu,C., 2016. Set-Valued Opimization. Springer, Berlin, 765 pages.
Lalitha,C.S. and Arora,R., 2008. Weak Clarke epiderivative in set-valued optimization. Journal of Mathematical Analysis and Applications. 342(1): 704–714.
Lalitha C.S. and Arora,R., 2009. Proper Clarke epiderivative in set-valued optimization. Taiwanese Journal of Mathematics. 13(6A): 1695–1710.
Li,S.J, Teo,K.L. and Yang X.Q., 2008. Higher-order Mond–Weir duality for set-valued optimization. Journal of Computational and Applied Mathematics. 217(2): 339–349.
Mond,B. and Weir,T., 1981. Generalized concavity and duality. In: S. Schaible, W.T. Ziemba (Eds.), Generalized Concavity in Optimization and Economics, Academic Press, New York. 263–279.
Sach,P.H. and Craven,B.D., 1991. Invexity in multifunction optimization. Numerical Functional Analysis and Optimization. 12(3–4): 383–394.
Wolfe,P., 1961. A duality theorem for nonlinear programming. Quarterly of Applied Mathematics. 19(3): 239–244.
Tung,L.T., 2017. Strong Karush-Kuhn-Tucker optimality conditions and duality for nonsmooth multiobjective semi-infinite programming via Michel-Penot subdifferential. Journal of Nonlinear Functional Analysis. 2017: 1–21. DOI: 10.23952/jnfa.2017.49
Tung,L.T., Khai,T.T., Hung,P.T. and Ngoc,P.L.B., 2019. Karush-Kuhn-Tucker optimality conditions and duality for set optimization problems with mixed constraints, Journal of Applied and Numerical Optimization. 1(3): 277–291.
Yu,G. and Kong,X., 2016. Optimality and duality in set-valued optimization using higher-order radial derivatives. Statistics, Optimization & Information Computing. 4(2): 154–162.