Nghiên cứu tạo protein tín hiệu nanoluciferase: Ứng dụng tạo cảm biến sinh học nhận diện kháng sinh
Abstract
Tóm tắt
Article Details
Tài liệu tham khảo
Bell, D.A., and Demarini, D.M., 1991. Excessive cycling converts PCR products to random-length higher molecular weight fragments. Nucleic Acids. 19(18): 5079.
Carlson, E.D., Gan, R., Hodgman, C.E., and Jewett, M.C., 2011. Cell-free protein synthesis: Applications come of age. Biotechnology Advances. 30(5): 1185-1194.
Duyen, T.T.M., Matsuura, H., Ujiie, K., Muraoka, M., Harada, K., and Hirata, K., 2017. Paper-based colorimetric biosensor for antibiotics inhibiting bacterial protein synthesis. Journal of Bioscience and Bioengineer. 123(1): 96–100.
England, C.G., Ehlerding, E.B., and Cai W., 2016. NanoLuc: A small luciferase is brightening up the field of bioluminescence. Bioconjugate Chemistry. 27(5): 95–121.
Griss, R., Schena, A., Reymond, L., et al., 2014. Bioluminescent sensor proteins for point-of-care therapeutic drug monitoring. Nature Chemical Biology. 10: 598–603.
Hall, M.P., Unch, J., Binkowski, B.F., et al., 2012. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chemical Biology. 7(11): 1848–1857.
Hoa, P.T.P., Managaki, S., Nakada, N.,et al., 2011. Antibiotic contamination and occurrence of antibiotic-resistant bacteria in aquatic environments of northern Vietnam. Science of The Total Environment. 409(15): 2894–2901.
Hodgman, E., and Jewett, M., 2013. Cell-free synthetic biology: Thinking outside of the cell. Metabolic Engineering. 14(3): 261–269.
Kohanski, M.A., Dwyer, D.J., and Collins, J.J., 2010. How antibiotics kill bacteria: from targets to networks. Nature Review Microbiology. 8(6): 423–435.
Lorenz, T.C., 2012. Polymerase chain reaction: Basic protocol plus troubleshooting and optimization strategies. Journal of Visualized Experiments. 63: 1–15.
Lowell, A.N., Santoro, N., Swaney, S.M., et al., 2015. Microscale adaptation of in vitrotranscription/translation for high-throughput screening of natural product extract libraries. Chemical Biology and Drug Design. 86: 1331–1338.
McCoy, L.S., Xie, Y., and Tor, Y., 2011. Antibiotics that target protein synthesis. Wiley Interdiscipline Review RNA. 2(2): 209–232.
Nishikawa, K., and Ueda, T., 2001. Cell-free translation reconstituted with purified components. Nature. 19: 751–755.
Pardee, K., Green, A.A., Ferrante, T., et al., 2014. Paper-based synthetic gene networks. Cell. 159(4): 940–954.
Pardee, K., Green, A.A., Takahashi, M.K., et al., 2016. Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell. 165(5): 1255–1266.
Pham, D.K., Chu, J., Do, N.T., Brose, F., Degand, G., Delahaut, P., De Pauw, E., Douny, C., Van Nguyen, K., Vu, T.D., et al., 2015. Monitoring antibiotic use and residue in freshwater aquaculture for domestic use in Vietnam. Ecohealth. 12(3): 480–489.
Phu, T.M., Phuong, N.T., Scippo, M.-L., Dalsgaard, A., Thinh, N., and Huong, D., 2015. Quality of antimicrobial products used in striped catfish (Pangasianodon hypophthalmus)aquaculture in Vietnam. PLoS One. 10: 1-8.
Slomovic, S., Pardee, K., and Collins, J.J., 2015. Synthetic biology devices for in vitro and in vivo diagnostics. Proceedings of National Academy of Sciences of the United State of America. 112(47): 14429–14435.
Suzuki, S., and Hoa, P.T.P., 2012. Distribution of quinolones, sulfonamides, tetracyclines in aquatic environment and antibiotic resistance in Indochina. Frontiers in Microbiology. 67(3): 1–8.
Uchida, K., Konishi, Y., Harada, K., et al., 2016. Monitoring of antibiotic residues in aquatic products in urban and rural areas of Vietnam. Journal of Agriculture and Food Chemistry. 64(31): 6133–6138.