Nguyễn Thị Quỳnh Mai * , Nguyễn Hồng Đào , Võ Thị Kim Viên , Lê Thị Khánh Hồng , Huỳnh Thị Quế Anh ĐàO Thị Mỹ Linh

* Tác giả liên hệ (maintq@cntp.edu.vn)

Abstract

This study is aimed to investigate the hydrolysis of xylooligosccharide from sugar cane bagasse using endo-1,4-β-xylanase enzyme. Sugarcane bagasse was pre-treated to remove lignin, then investigated to receive xylan. The hydrolysis of xylan was carried out with 2 investigated factors: enzyme concentration and hydrolysis time. XOS solution was then concentrated at 65°C and freezed dried under condition: frozen temperature of -80oC, vacuum pressure of 3.5 Pa, drying time of 14 h. XOS powder was used to evaluate radical scavenging activities by 2, 2, diphenyl-1-picrylhydrazyl (DPPH) assay and the effect on the growth of Lactobacillus plantarum (L.  plantarum). Results showed that, sugarcane bagasse, pretreated with H2O2 6%, KOH 15%, was suitable for the collecting of xylan with the recovery yield of 36.73%. The highest XOS concentration of 1148.92 mg/L was obtained under favorable conditions (enzyme dose 75 U/g, reaction time of 8 h). After evaporation, the XOS content in the fluid increased to 13.6 times. At XOS concentration of 4 mg/mL, DPPH radical scavenging activity reached 50 %. In additions, other experiments proved that, L. plantarum used XOS as a source of carbon for growth.
Keywords: DPPH, enzyme endo-1, 4-β- xylanase, Lactobacillus p lantarum, sugarcane bagasse, xylooligosaccharide (XOS)

Tóm tắt

Nghiên cứu này nhằm mục đích khảo sát quy trình thu nhận XOS từ bã mía bằng enzyme endo-1,4-β-xylanase. Bã mía được tiền xử lý nhằm loại bỏ lignin và thu nhận hemicellulose giàu xylan. Quá trình thủy phân xylan được thực hiện với 2 yếu tố khảo sát là nồng độ enzyme và thời gian. Dịch XOS sau đó được cô đặc ở nhiệt độ 65oC và sấy thăng hoa ở nhiệt độ -80oC, áp suất 3,5 Pa, thời gian sấy 14 giờ. Bột XOS được đánh giá khả năng kháng oxy hóa bằng phương pháp DPPH và đánh giá tác động đối với sự tăng trưởng của Lactobacillus plantarum (L.  plantarum). Kết quả nghiên cứu cho thấy, bã mía được tiền xử lý bằng H2O2 6%, KOH 15% thích hợp để thu hemicellulose giàu xylan với hiệu suất thu hồi là 36,73%. Hàm lượng XOS cao nhất đạt 1148,92 mg/L ở điều kiện thủy phân tương ứng với tỉ lệ enzyme bổ sung 6% (v/v) (ứng với lượng enzyme 75 U/g) trong thời gian thủy phân 8 giờ. Sau khi cô đặc, hàm lượng XOS trong dịch tăng lên 13,6 lần. Bột XOS thể hiện khả năng loại bỏ gốc tự do DPPH đạt 50% tại nồng độ XOS 4 mg/mL và được lợi khuẩn L.  plantarum sử dụng như nguồn carbon để tăng trưởng.
Từ khóa: Bã mía, DPPH, enzyme endo-1, 4-β-xylanase, Lactobacillus plantarum, xylooligosaccharide (XOS)

Article Details

Tài liệu tham khảo

Aachary, A. A., and Prapulla, S. G., 2011. Xylooligosaccharides(XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Comprehensive Reviews in Food Science and Food Safety. 10(1): 2-16.

Akpinar, O., Erdogan, K., and Bostanci, S., 2009. Enzymatic production of xylooligosaccharidefrom selected agricultural wastes. Food and Bioproducts Processing. 87(2): 145-151.

Azmi, A. F. M. N., Mustafa, S., Hashim, D. M., and Manap, Y. A., 2012. Prebiotic activity of polysaccharides extracted from Gigantochloalevis(Buluhbeting) shoots. Molecules. 17(2): 1635-1651.

Beards, E., Tuohy, K., and Gibson, G., 2010. Bacterial, SCFA and gas profiles of a range of food ingredients following in vitro fermentation by human colonic microbiota. Anaerobe. 16(4): 420-425.

Bian, J., Peng, F., Peng, X. P., Peng, P., Xu, F., and Sun, R. C., 2013. Structural features and antioxidant activity of xylooligosaccharidesenzymatically produced from sugarcane bagasse. Bioresource technology. 127: 236-241.

Bian, J., Peng, F., Peng, X. P., Xu, F., Sun, R. C., and Kennedy, J. F., 2012. Isolation of hemicelluloses from sugarcane bagasse at different temperatures: structure and properties.Carbohydrate polymers. 88(2): 638-645.

Brienzo, M., Siqueira, A. F., and Milagres, A. M. F., 2009. Search for optimum conditions of sugarcane bagasse hemicellulose extraction. Biochemical Engineering Journal. 46(2): 199-204.

Brienzo, M., Carvalho, W. and Milagres, A. M., 2010. Xylooligosaccharidesproduction from alkali-pretreated sugarcane bagasse using xylanases from Thermoascusaurantiacus. Applied biochemistry and biotechnology. 162(4): 1195-1205.

Buslov, D. K., Kaputski, F. N., Sushko, N. I., Torgashev, V. I., Solov’eva, L.V. Zubét, O.V., and larchenko, L.V., 2009. Infrared spectroscopic analysis of the structure of xylans. Journal of Applied Spectroscopy. 76(6): 801–805.

Chapla, D., Pandit, P., and Shah, A., 2012. Production of xylooligosaccharidesfrom corncob xylanby fungal xylanase and their utilization by probiotics. Bioresource Technology. 115: 215-221.

Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., and Smith, F., 1956. Colorimetric method for determination of sugars and related substances.Analytical chemistry. 28(3): 350-356.

Faryar, R., Linares-Pastén, J. A., Immerzeel, P., Mamo, G., Andersson, M., Stålbrand, H. and Karlsson, E. N., 2015. Production of prebiotic xylooligosaccharidesfrom alkaline extracted wheat straw using the K80R-variant of a thermostable alkali-tolerant xylanase. Food and Bioproducts Processing. 93: 1-10.

Jagtap, S., Deshmukh, R. A., Menon, S., and Das, S., 2017. Xylooligosaccharidesproduction by crude microbial enzymes from agricultural waste without prior treatment and their potential application as nutraceuticals. Bioresource technology. 245: 283-288.

Jayapal, N., Samanta, A. K., Kolte, A. P., Senani, S., Sridhar, M., Suresh, K. P. and Sampath, K. T., 2013. Value addition to sugarcane bagasse: xylanextraction and its process optimization for xylooligosaccharidesproduction. Industrial Crops and Products. 42: 14-24.

Maziero, P., NetoMairiode Oliveira, Machado, D., Batista, T., Cavalheiro, C. C.S., Neumann, M. G. and Gonçalves, A. R. 2012. Structural features of lignin obtained at different alkaline oxidation conditions from sugarcane bagasse. Industrial crops and products. 35(1): 61-69.

Miller, G. L., 1959. Use of dinitrosalicylicacid reagent for determination of reducing sugar. Analytical chemistry. 31(3): 426-428.

Rajagopalan, G., Shanmugavelu, K., and Yang, K.L., 2017. Production of prebiotic-xylooligosaccharidesfrom alkali pretreated mahogany and mango wood sawdust by using purified xylanase of Clostridium strain BOH3. Carbohydrate polymers. 167: 158-166.

Samanta, A. K., Jayapal, N., Jayaram, C., Roy, S., Kolte, A. P., Senani, S. andSridhar, M., 2015. Xylooligosaccharidesas prebiotics from agricultural by-products: Production and applications. Bioactive Carbohydrates and Dietary Fibre. 5(1): 62-71.

Tiboni, M., Grzybowski, A., Baldo, G.R., Dias Jr. E.F., Tanner, R.D., Kornfield, J.A. and Fontana, J.D., 2014. Thermopressurizeddiluted phosphoric acid pretreatmentof ligno(hemi)cellulose to make free sugars and nutraceutical oligosaccharides. Journal ofIndustrial Microbiology and Biotechnology. 41(6): 957–964.