Lê Anh Vũ * , Phan Thị Cẩm Quyên Nguyễn Thúy Hương

* Tác giả liên hệ (lavu68@gmail.com)

Abstract

Due to the emergence of multidrug­resistant strains of Methicillin resistant Staphylococcus aureus (MRSA), there is an urgent need for the identification of new targets for drug development. In this study, an in silico-based approach was used to investigate several protein/gene databases to find potential target proteins in MRSA. The results show that 158 ​​proteins are non-homologous essential proteins in which 49 proteins take part in 11 unique metabolic pathways. According to DrugBank database, two proteins namely respiratory nitrate reductase alpha chain (NarG) and tubulin homolog protein (FtsZ) was suggested as best putative targets against MRSA. The other proteins were considered as putative novel target. The identified drug targets are expected to be of great potential for discovery of novel therapeutic compounds against MRSA.
Keywords: Database analysis, essential proteins, in silico-based approach, MRSA, non-homologous proteins

Tóm tắt

Với sự xuất hiện của nhiều chủng Staphylococcus aureus kháng Methicillin (MRSA), có một nhu cầu cấp thiết cho sự xác định các mục tiêu mới phục vụ quá trình phát triển thuốc. Trong nghiên cứu này, phương pháp tiếp cận in silico được sử dụng trong sàng lọc một số cơ sở dữ liệu (CSDL) protein/gene để tìm các protein mục tiêu tiềm năng ở MRSA. Kết quả cho thấy 158 protein thiết yếu không tương đồng trong đó có 49 protein tham gia vào 11 con đường trao đổi chất riêng biệt. Theo CSDL DrugBank, hai protein là tiểu đơn vị alpha enzyme hô hấp khử nitrat (NarG) và protein tương đồng tubulin (FtsZ) được xác định là các mục tiêu tốt nhất. Các protein còn lại được đề xuất là các mục tiêu giả định mới ở MRSA. Những mục tiêu thuốc được xác định dự kiến ​​sẽ có tiềm năng lớn cho việc khám phá các hợp chất trị liệu mới chống lại MRSA.
Từ khóa: MRSA, phân tích CSDL, phương pháp tiếp cận in silico, protein không tương đồng, protein thiết yếu

Article Details

Tài liệu tham khảo

Boratyn, G.M., Camacho, C., Cooper, P.S., et al., 2013. BLAST: a more efficient report with usability improvements. Nucleic Acids Research. 41(W1): W29-W33.

Cordwell, S.J., Larsen, M.R., Cole, R.T. and Walsh, B.J., 2002. Comparative proteomics of Staphylococcus aureus and the response of methicillin-resistant and methicillin-sensitive strains to Triton X-100. Microbiology. 148(9): 2765-2781.

de Pereda, J.M., Leynadier, D., Evangelio, J.A., Chacón, P. and Andreu, J.M., 1996. Tubulin secondary structure analysis, limited proteolysis sites, and homology to FtsZ. Biochemistry. 35(45): 14203-14215.

Edgar, R.C., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 26(19): 2460-2461.

Erickson, H.P., Taylor, D.W., Taylor, K.A. and Bramhill, D., 1996. Bacterial cell division protein FtsZassembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proceedings of the National Academy of Sciences of the United States of America. 93(1): 519-523.

Haag, N.L., Velk, K.K. and Wu, C., 2012. Potential antibacterial targets in bacterial central metabolism. International Journal on Advances in Life Sciences. 4(1-2): 21–32.

Hasan, M.A., Alauddin, S.M., Al-Amin, M., Nur, S.M. and Mannan, A., 2016. Identification of putative drug targets in vancomycin-resistant Staphylococcus aureus (VRSA) using computer aided protein data analysis. Gene. 575(1): 132-143.

Holman, S.E., 2011. Effect of the nitrate reductase operon on Staphylococcus aureus biofilm formation. MSc dissertation. Graduate School, University of Florida, Florida, United States of America, 77 pages.

Hossain, T., Kamruzzaman, M., Choudhury, T.Z., et al., 2017. Application of the subtractive genomics and molecular docking analysis for the identification of novel putative drug targets against Salmonella enterica subsp. enterica serovar Poona. BioMed Research International. Vol. 2017, Article ID 3783714, 9 pages.

Hossain, M., Chowdhury, D.U.S., Farhana, J., Akbar, M.T., Chakraborty, A., Islam, S. and Mannan, A., 2013. Identification of potential targets in Staphylococcus aureus N315 using computer aided protein data analysis. Bioinformation. 9(4): 187–192.

Huang, Q., Tonge, P.J., Slayden, R.A., Kirikae, T. and Ojima, I., 2007. FtsZ: A novel target for tuberculosis drug discovery. Current Topics in Medicinal Chemistry. 7(5): 527-543.

Judson, N. and Mekalanos, J.J., 2000. TnAraOut, A transposon-based approach to identify and characterize essential bacterial genes. Nature Biotechnology. 18(7): 740-745.

Knox, C., Law, V., Jewison, T., et al., 2011. DrugBank3.0: a comprehensive resource for “Omics” research on drugs. Nucleic Acids Research. 39(Database issue): D1035–D1041.

Kumar, K., Awasthi D., Berger, W.T., Tonge, P.J., Slayden, R.A. and Ojima, I., 2010. Discovery of anti-TB agents that target the cell-division protein FtsZ. Future Medicinal Chemistry. 2(8): 1305-1323.

Mingorance, J., Rivas, G., Vélez, M., Gómez-Puertas, P. and Vicente, M., 2010. Strong FtsZis with the force: mechanisms to constrict bacteria. Trends in Microbiology. 18(8): 348–356.

Moreno-Vivián, C., Cabello, P., Martínez-Luque, M., Blasco, R. and Castillo, F., 1999. Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. Journal of Bacteriology. 181(21): 6573-6584.

Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A.C. and Kanehisa, M., 2007. KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Research. 35(Web Server issue): W182-W185.

Morya, V.K., Dewaker, V., Mecarty, S.D. and Singh, R., 2010. In silico analysis metabolic pathways for identification of putative drug targets for Staphylococcus aureus. Journal of Computer Science and Systems Biology. 3(3): 062-069.

Patnala, K. and Zaveri, K., 2016. Screening of putative therapeutic candidates in superbug (Staphylococcus aureus): a systematic in silico approach. Asian Journal of Pharmaceutical and Clinical Research. 9(14): 283-291.

Rathi, B., Sarangi, A.N. and Trivedi, N., 2009. Genome subtraction for novel target definition in Salmonella typhi. Bioinformation. 4(4): 143-150.

Schaffner-Barbero, C., Martín-Fontecha, M., Chacón, P. and Andrew, J.M., 2011. Targeting the assembly of bacterial cell division protein FtsZwith small molecules. ACS Chemical Biology. 7(2): 269-277.

Stapleton, P.D. and Taylor, P.W., 2002. Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Science Progress. 85(Pt1): 57–72.

UniProt Consortium, T., 2018. UniProt: the universal protein knowledgebase. Nucleic Acids Research. 46(5): 2699.

Zhang, R., Ou, H.Y and Zhang, C.T., 2004. DEG: A database of essential genes. Nucleic Acids Research. 32(Database issue): D271-D272.