Giải pháp phân loại bài báo khoa học bằng kĩ thuật máy học
Abstract
Tóm tắt
Article Details
Tài liệu tham khảo
Aggarwal, C. C. and Zhai, C., 2012. In: Aggarwal, C. C. and Zhai, C. (Eds.). Mining Text Data. Springer US. Boston, MA, 163-222.
Bijaksana, M. A., Li, Y. and Algarni, A., 2013. A Pattern Based Two-Stage Text Classifier. In: PernerP. (eds). Machine Learning and Data Mining in Pattern Recognition. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 169-182.
Boser, B. E., Guyon, I. M. and Vapnik, V. N., 1992, A training algorithm for optimal margin classifiers. In. Proceedings of the fifth annual workshop onComputational learning theory, Pittsburgh, Pennsylvania, USA. ACM. 130401, 144-152.
Burges, C. J. C., 1998. A Tutorial onSupport Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery. 2 (2): 121-167.
Chakrabarti, S., 2003. Mining theWeb: Discovering Knowledge fromHypertext Data.
Chen, J., Huang, H., Tian, S. and Qu, Y., 2009. Feature selection for text classification withNaïve Bayes. Expert Syst. Appl.36 (3): 5432-5435.
Cortes, C. and Vapnik, V., 1995. Support-vector networks. Machine learning. 20 (3): 273-297.
Dumais, S., Platt, J., Heckerman, D. and Sahami, M., 1998, Inductive learning algorithms and representations for text categorization. In. Proceedings of the seventh international conference onInformation and knowledge management, Bethesda, Maryland, USA. ACM. 288651: 148-155.
George, H. J. and Pat, L., 1995, Estimating continuous distributions inBayesian classifiers. In. Proceedings of theEleventh conference onUncertainty in artificial intelligence, Montréal, Qué, Canada. Morgan Kaufmann Publishers Inc. 2074196: 338-345.
Haddoud, M., Mokhtari, A., Lecroq, T. and Abdeddaïm, S., 2016. Combining supervised term-weighting metrics forSVM text classification with extended term representation. Knowledge and Information Systems. 49 (3): 909-931.
Li, Y., Zhang, L., Xu, Y., Yao, Y., Lau, R. Y. K. and Wu, Y., 2017. Enhancing Binary Classification byModeling Uncertain Boundary in Three-Way Decisions. IEEE Transactions on Knowledge and Data Engineering. 29 (7): 1438-1451.
Liu, B., Dai, Y., Li, X., Lee, W. S. and Yu, P. S., 2003. Building text classifiers using positive and unlabeled examples. Third IEEE International Conference on Data Mining, pp. 179-186.
McCallum, A. and Nigam, K., 1998. A comparison of event models for naive bayestext classification. AAAI-98 workshop on learning for text categorization. Citeseer, pp. 41-48.
Mitchell, T., 1997. Machine Learning, McGraw-Hill Higher Education. New York.
NguyễnThị Minh Huyền, Vũ Xuân Lương và Lê Hồng Phương., 2010. VnTokenizer, accessed onJuly 15, 2019. Available from https://sourceforge.net/projects/vntokenizer/.
Perone, C. S., 2013. Machine Learning :: Cosine Similarity for Vector Space Models (Part III), accessed on July 20, 2019. Available from http://blog.christianperone.com/2013/09/machine-learning-cosine-similarity-for-vector-space-models-part-iii/.
Sebastiani, F., 2002. Machine learning in automated text categorization. ACM Comput. Surv.34 (1): 1-47.
Tan, P.-N., Steinbach, M. and Kumar, V., 2006. Data Mining Introduction. Bei Jing: The people post andTelecommunications Press.
Thaoroijam, K., 2014. A Study on Document Classification usingMachine Learning Techniques. IJCSI International Journal of Computer Science. 11: 217-222
Trần Cao Đệ và Phạm Nguyên Khang, 2012. Phân loại văn bản với máy học véc-tơ hỗ trợ và cây quyết định. Tạp chí Khoa học Trường Đại học Cần Thơ. 21a: 52-63.
Trần Thị Thu Thảo và Vũ Thị Chinh, 2012. Xây dựng hệ thống phân loại tài liệu tiếng Việt. Báo cáo nghiên cứu khoa học. Trường Đại học Lạc Hồng. Đồng Nai.
Tsai, C.-H., 2000. MMSEG: A Word Identification System for Mandarin Chinese Text Based on Two Variants of the Maximum Matching Algorithm, accessed on July 22, 2019. Available from http://technology.chtsai.org/mmseg/.
Yang, Y. and Liu, X., 1999. A re-examination of text categorization methods. Sigir, pp. 99.
Yang, Y. and Pedersen, J. O., 1997, A Comparative Study on Feature Selection in Text Categorization. In. Proceedings of the Fourteenth International Conference on Machine Learning. Morgan Kaufmann Publishers Inc. 657137: 412-420.
Zhang, L., Li, Y., Sun, C. and Nadee, W., 2013. Rough Set Based Approach toText Classification. 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), pp. 245-252.