Quách Ngọc Thịnh * , Phạm Văn Toàn , Thiều Quang Quốc Việt Đào Minh Trung

* Tác giả liên hệ (ngocthinh@ctu.edu.vn)

Abstract

In recent years, there have been great attentions in microbial fuel cells (MFCs) because they use a variety of biodegradable substrates as fuel and MFC is considered as a renewable energy source. However, MFC generates a very low power. Consequently, harvest and use of this energy source is still a major challenge for scientists. Thus, energy harvesting systems are very necessary for real applications. There have been many researches on technology to harvest and store energy from MFC, but they are only individual research projects. Therefore, this paper provides an overview of MFC energy harvesting technology and mentions the ability to develop into commercial energy source.
Keywords: Boost converter, capacitor, charge pump, maximum power point, microbial fuel cell

Tóm tắt

Trong những năm gần đây, các nhà nghiên cứu đã có những sự quan tâm lớn đến tế bào nhiên liệu vi khuẩn bởi vì chúng sử dụng nhiên liệu từ nhiều chất nền phân hủy sinh học khác nhau và tế bào nhiên liệu vi khuẩn được xem như là một nguồn năng lượng tái tạo. Tuy nhiên, năng lượng thu được từ tế bào nhiên liệu là rất nhỏ. Do đó, việc thu và sử dụng nguồn năng lượng này vẫn đang là một thử thách lớn đối các nhà khoa học. Vì thế, những hệ thống thu năng lượng từ tế bào nhiên liệu vi khuẩn là rất cần thiết cho những ứng dụng thực tiễn. Nhiều nghiên cứu về các kỹ thuật thu và tích trữ năng lượng từ tế bào nhiên liệu vi khuẩn đã được thực hiện. Tuy nhiên, những nghiên cứu này chỉ dừng lại ở mức độ riêng lẻ. Do đó, bài báo giúp cho các nhà khoa học có một cái nhìn tổng quan về các kỹ thuật thu năng lượng từ tế bào nhiên liệu vi khuẩn và khả năng phát triển thành một nguồn năng lượng thương mại.
Từ khóa: Bơm điện tích, Điểm công suất cực đại, Mạch tăng áp, Tế bào nhiên liệu vi khuẩn, Tụ điện

Article Details

Tài liệu tham khảo

Aelterman, P., Rabaey, K., Pham, H.T., Boon, N., and Verstraete, W., 2006. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environmetal Science & Technology. 40(10):3388-3394.

Akdeniz, F., Caglar. A., and Gullu, D., 2002. Recent energy investigations on fossil and alternative nonfossil resources in Turke. Energy Conversion and Management. 43(4): 575-589.

Antonopoulou, G., Stamatelatou, K., Bebelis, S., and Lyberatos, G., 2010. Electricity generation from synthetic substrates and cheese whey using a two chamber microbial fuel cell. Biochemical Engineering Journal. 50(1-2): 10-15.

Deeke, A., Sleutels, T.H., Hamelers, H.V.M., and Buisman, C.J.N., 2012. Capacitive bioanodes enable renewable energy storage in microbial fuel cells. Environmental Science & Technology. 46(6): 3554-3560.

Degrenne, N., Buret, F., Allard, B., and Bevilacqua, P., 2012. Electrical energy generation from a large number of microbial fuel cells operating at maximum power point electrical load. Journal of Power Sources. 205:188-193.

Dewan, A.,Beyenal, H., andLewandowski, Z., 2009. Intermittent energy harvesting improves the performance of microbial fuel cells. Environmental Science & Technology. 43(12): 4600-4605.

Dewan, A., Donovan, C., Heo, D., and Beyenal, H., 2010. Evaluating the performance of microbial fuel cells powering electronic devices. Journal of Power Sources. 195(1): 90-96.

Donovan, C.,Dewan, A.,Heo, D., andBeyenal, H., 2008.Batteryless,wireless sensor powered by a sediment microbial fuel cell. Environmental Science &Technology. 42(22): 8591-8596.

Donovan, C., Dewan, A., Peng, H., Heo, D., and Beyenal, H., 2011. Power management system for a 2.5 W remote sensor powered by a sediment microbial fuel cell. Journal of Power Sources. 196(3):1171-1177.

Du, Z., Li, H., and Gu, T., 2007. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances. 25(5): 464-482.

Erbay, C., Bautista, S. C., Sinencio, E. S., and Han, A., 2014. High performance monolithic power management system with dynamic maximum power point tracking for microbial fuel cells. Environmental Science & Technology. 48(23):13992-13999.

Ghasemi, M., Wan, W.R., Ismail, M., et al., 2013. Effect of pre-treatment and biofouling of proton exchange membrane on microbial fuel cell performance. International Journal of Hydrogen Energy. 38(13): 5480-5484.

Grondin, F.,Perrier, M.,andTartakovsky, B.,2012.Microbial fuel celloperation with intermittent connection of the electrical load. Journal of PowerSources.208(15): 18-23.

Ieropoulos, I.A., Greenman, J., Melhuish,C., and Horsfield, I.,2012.Microbial fuel cells for robotics: Energy autonomy through artificialsymbiosis. ChemSusChem.5(6): 1020-1026.

Ieropoulos, I.A., Ledezma, P., Stinchcombe, A., Papaharalabos, G., Melhuish, C., and Greenman, J., 2013. Waste to real energy: The first MFC powered mobile phone. Physical Chemistry Chemical Physics. 15(37): 15312-15316.

Karra, U.,Muto, E.,Umaz, R.,Köllna, M.,Santoro, C.,Wang,L., andLi, B., 2014.Performance evaluation of activated carbon-based electrodeswith novel power management system for long-term benthic microbialfuel cells. International Journal of Hydrogen Energy.39(36): 21847-21856.

Kim, Y., Hatzell, M.C.,Hutchinson, A.J.,and Logan, B.E.,2011. Capturing power at higher voltages from arrays of microbial fuel cellswithout voltage resersal. Energy & Environmental Science. 4(11): 4662-4667.

Liang, P., Wu, W., Wei, J., Yuan, L., Xia X., and Huang, X., 2011. Alternate charging and discharging of capacitor to enhance the electron production of bioelectrochemical systems. Environmental Science & Technology. 45(15): 6647-6653.

Liu, J., Feng, Y., He, W., Gong, Y., Qu, Y., and Ren, N., 2014. A novel boost circuit design and in situ electricity application for elemental sulfur recovery. Journal of Power Sources. 248: 317-322.

Logan, B.E., Hamelers, B., and Rozendal R., 2006. Microbial fuel cells: Methodology and technology. Environmental Science & Technology. 40(17):5181-5192.

Marcelo G.V. and Ernesto R.F. Analysis and simulation of the P&O MPPT algorithm using a linearized PV array model. 2009 35th Annual Conference of IEEE Industrial Electronics, 3-5 Nov. 2009, Porto, Portugal.IEEE. 231-236.

McBride, L.R., Girguis, P., and Reimers, C.E., 2006. Power storage and conversion from an ocean microbial energy source. OCEANS 2006, 18-21 Sept. 2006, Boston, MA, USA. IEEE. 1-5.

Meehan, A., Gao, H., and Lewandowski, Z., 2011. Energy harvesting with microbial fuel cell and power management system. IEEE Transactions on Power Electronics. 26(1): 176-181.

Muhammad, H.R., Narendra, K., and Ashish, R.K., 2014. Power electronics: Devices, Circuits, and Application, Fourth Edition. Pearson. 1027 pages.

Nielsen, M.E., Wu, D.M., Girguis, P.R., and Reimers, C.E., 2009. Influence of substrate on electron transfer mechanisms in chambered benthic microbial fuel cells. Environmental Science & Technology. 43(22): 8671-8677.

Papaharalabos, G., Greenman, J., Stinchcombe, A., Horsfield, I., Melhuish, C., and Ieropoulos, I., 2014. Dynamic electrical reconfiguration for improved capacitor charging in microbial fuel cell stacks. Journal of Power Sources. 272: 34-38.

Park, J.D., and Ren, Z., 2012. Hysteresis controller based maximum power point tracking energy harvesting system for microbial fuel cells. Journal of Power Sources. 205(9):151-156.

Park, J.D. and Ren, Z., 2012. High efficiency energy harvesting from microbial fuel cells using a synchronous boost converter. Journal of Power Sources. 208: 322-327.

Peighambardoust, S., Rowshanzamir, S., and Amjadi, M., 2010. Review of the proton exchange membranes for fuel cell application. International Journal of Hydrogen Energy. 35(17): 9349-9384.

Pinto, R.P., Srinivasan, B., Guiot, S.R., and Tartakovsky, B., 2011. The efffect of real-time external resistance optimization on microbial fuel cell performance. Water Research. 45(4): 1571-1578.Rahimnejad, M., Mokhtarian, N., Najafpour, G., Ghoreyshi, A., and Dahud, W., 2009. Effective parameters on performance of microbial fuel cell. 2009 Second International Conference on Environmental and Computer Science, 28-30 Dec. 2009, Dubai, United Arab Emirates.IEEE. 1: 411-415.

Rahimnejad, M., Ghoreyshi, A.A., and Najafpour, G., 2011. Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Applied Energy. 88(11): 3999-4004.

Rahimnejad, M., Ghoreyshi, A., Najafpour, G., Younesi, H., and Shakeri, M., 2012. A novel microbial fuel cell stack for continuous production of clean energy. International Journal of Hydrogen Energy. 37(7): 5992-6000.

Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., and Oh, S.E., 2015. Microbial fuel cell as new technology for bioelectricity generation: A review. Alexandria Engineering Journal.54(3): 745-756.Ren, S., Xia, X., Yuan, L., Liang, P., and Huang, X., 2013. Enhancing charge harvest from microbial fuel cells by controlling the charging and discharging frequency of capacitors. Bioresource Technology. 146: 812-815.

Shantaram, A.,Beyenal, H.,Raajan, R.,Veluchamy, A., and Lewandowski, Z., 2005.Wireless sensors powered by microbial fuel cells.Environmental Science & Technology. 39(13): 5037-5042.

Seiko Instruments Inc., Ultra low voltage operation charge pump ic for step up DC-DC converter startup, S_882Z Datasheet, Dec. 2007.

Trishan, E. and Patrick, L.C., 2007. Comparison of photovoltaic array maximum power point tracking techniques. ieee transactions on energy conversion. 22(2): 439-449.

Walters, P., Lewis, A., Stinchcombe, A., Stephenson, R., and Ieropoulos, I., 2013. Artificial heartbeat: Design and fabrication of a biologically inspired pump. Bioinspiration & Biomimetics. 8(4): 046012.Wang, H., Park, J.D., and Ren, Z., 2012. Active energy harvesting from microbial fuel cells at the maximum power point without using resistors. Environmental Science & Technology. 46(9): 5247-5252.

Wang, H. and Ren, Z., 2014. Bioelectrochemical metal recovery from wastewater: A review. Water Research. 66:219-232.

Wang, H., Park, J.D., and Ren, Z.J., 2015. Practical energy harvesting for microbial fuel cells: A review. Environmental Science & Technology. 49(6): 3267-3277.

Woodward, L., Perrier, M., Srinivasan, B., Pinto, R.P., and Tartakovsky, B., 2010. Comparison of real-time methods for maximizing power output in microbial fuel cells. AIChE Journal. 56(10): 2742-2750.

Xia, C.S., Zhang, D.X., Pedrycz, W., Zhu, Y.M., and Guo, Y.X., 2018. Models for microbial fuel cells: A critical review. Journal of Power Sources. 373: 119-131.

Yang, F., Zhang, D., Shimotori, T., Wang, K.C., and Huang, Y., 2012. Study of transformer-based power management system and its performance optimizaiton for microbial fuel cells. Journal of Power Sources. 205: 86-92.

Zhang, D.,Yang, F.,Shimotori, T.,Wang, K.C.,and Huang, Y.,2012. Performance evaluation of power management systems in microbialfuel cell-based energy harvesting applications for driving smallelectronic devices. Journal of Power Sources.217: 65-71.

Zhang, F.,Tian, L., andHe, Z., 2011.Powering a wireless temperaturesensor using sediment microbial fuel cells with vertical arrangementofelectrodes. Journal of Power Sources.196(22): 9568-9573.