Điều kiện bị chặn của hệ phương trình sai phân Volterra phi tuyến với chậm hữu hạn
Abstract
Tóm tắt
Article Details
Tài liệu tham khảo
Aeyels, J. D. and R. Sepulchre, 2000. Boundedness properties for time-varying nonlinear systems. SIAM Journal on Control andOptimization, 39(5): 1408-1422.
Brunner, H. and P. J. Houwen, 1986. The numerical solution ofVolterra equations, CWI. Monographs, North-Holland, Amsterdam, 588 pages.
Crisci, M. R., V. B. Kolmanovskii, E. Russo, and A. Vecchio, 1998. Stability of differenceVolterra equations: directLiapunov method and numerical procedure. Computers &Mathematics withApplications. 36: 77-97.
Elaydi, S., 2005. An introduction to difference equations, Springer Verlag, 539 pages.
Kolmanovskii, V. B., E. Castellanos-Velasco, and J. A. TorresMunoz, 2003. A survey: stability and boundedness ofVolterra difference equations. Nonlinear Analysis: Theory, Methods & Applications. 53, 861-928.
Ngoc, P. H. A. and L. T. Hieu, 2013. New criteria for exponential stability of nonlinear difference systems with time-varying delay. International Journal of Control. 86(9): 1646-1651.
Ngoc, P. H. A., T. Naito, J. S. Shin, and S. Murakami, 2009. Stability and robuststability of positive linearVolterra difference equations. International Journal of Robust and Nonlinear Control. 19(5): 552-568.
Ngoc, P. H. A. and L. T. Hieu, 2017. Stability of nonlinearVolterra equations. Bulletin of The Polish Academy of Sciences: Technical Sciences. 65(3): 333-340.
Shen, T. and R. P. Ian, 2018. An ultimate state bound for a class of linear systems with delay. Automatica. 87: 447-449.
Xu, L. and S. S. Ge, 2015. Exponential ultimate boundedness of nonlinear stochastic difference systems with time-varying delays. International Journal of Control. 88(5): 983-989.