Nguyễn Văn Mười * Hà Thị Thụy Vy

* Tác giả liên hệ (nvmuoi@ctu.edu.vn)

Abstract

The purpose of this study is to investigate optimal conditions for proteins’ hydrolysis of white shrimp head meat (Litopenaeus vannemei) by using alcalase enzyme. The response surface methodology with two factors: pH (6.5-8.0) and temperature (50-70°C) which included 11 experiments was used to optimize the hydrolysis process. Meanwhile, the effect of the alcalase enzyme concentrations on degree of hydrolysis (%DH) and antioxidant activity (%DPPH) was evaluated at 5 values: (10, 20, 30, 40, 50 UI/g) with 6 different reaction times (1, 2, 3, 4, 5, 6 hours). Consequently, the following conditions including alcalase enzyme concentrations (20 UI/g), pH (7.65), temperature (58.78°C), and hydrolysis time (4 hours) were found optimal to hydrolyze the proteins in white shrimp head meat with a high degree of hydrolysis (37.6%) and good antioxidant activity (31.57%).
Keywords: Alcalase, antioxidant, hydrolysis, response surface methodology, white shrimp head meat

Tóm tắt

Nghiên cứu được thực hiện nhằm mục đích khảo sát điều kiện thủy phân protein từ thịt đầu tôm thẻ chân trắng (Litopenaeus vannamei) thích hợp bằng enzyme alcalase. Quá trình thủy phân được tối ưu hóa theo phương pháp bề mặt đáp ứng với 2 nhân tố pH (6,5÷8,5) và nhiệt độ (50÷70 °C), bao gồm 11 đơn vị thí nghiệm, đồng thời, khảo sát ảnh hưởng của nồng độ enzyme alcalase được thay đổi ở 5 giá trị (10, 20, 30, 40, 50 UI/g) và 6 mức thời gian (1, 2, 3, 4, 5, 6 giờ) đến hiệu suất thủy phân (DH%) và hoạt tính chống oxy hóa (% DPPH) của dịch thủy phân. Kết quả cho thấy, sử dụng nồng độ enzyme alcalase 20 UI/g trong thời gian thủy phân 4 giờ ở pH 7,65 và nhiệt độ 58,78 °C là điều kiện thích hợp để hiệu suất thủy phân cao (37,6%) và hoạt tính chống oxy hóa của dịch thủy phân tốt (31,57%).
Từ khóa: Alcalase, chống oxy hóa, phương pháp bề mặt đáp ứng, thịt đầu tôm, thủy phân

Article Details

Tài liệu tham khảo

Babu, C.M., Chakrabarti, R. and Sambasivarao, K.R.S., 2008. Enzymatic isolation of carotenoid-protein complex from shrimp head waste and its use as a source of carotenoids. LWT - Food Science and Technology. 41(2): 227-235

Bùi Thị Hồng Thạnh, 2012. Nghiên cứu thu hồi dịch protein từ dịch thủy phân đầu tôm thẻ chân trắng bằng alcalase và đánh giá một số tính chất chức năng của sản phẩm. Luận văn tốt nghiệp đại học của Đại học Nha Trang.

Chalamaiah, M., Dinesh kumar, B., Hemalatha, R., Jyothirmayi, T., 2012. Fish protein hydrolysates: proxymate composition, amino acid composition, antioxydant activities and applications. Food Chem.135(4): 3020-3038.

Dey, S. and Dora, K.C., 2011. Optimization of the production of shrimp waste protein hydrolysate using microbial proteases adopting response surface methodology. Journal of Food Science and Technology. 51(1): 16-24.

Dey, S.S. and Dora, K.C., 2014. Antioxidative activity of protein hydrolysate produced by alcalase hydrolysis from shrimp waste (Penaeus monodon and Penaeus indicus). Journal of Food Science and Technology.51(3): 449-457.

Guerard, F., Sunaya – Martinez, M.T., Laroque, D., Chabeaud, A. and Dufosse, L., 2007. Optimization of free radical scavenging activity by response surface methodology in the hydrolysis of shrimp processing discards.ProcessingBiotechnology.42(11): 1426-1491.

Janarthanan, G., Nagalakshmi, K., Sathishkumar, K., Rupshankar, C. and Venkateshwarlu, G., 2015. Protein hydrolysates from Shrimp (Metapenaeus dobsoni) head waste: Optimization of extraction conditions by response surface methodology. Journal of Aqutic Food Product Technology.24: 429-442.

Joo, H.S., and Chang, C.S., 2006. Production of an oxidant and SDS - Stable alkaline protease from an alkalophilic Bacillus clausii 1-52 submerged fermentation, feasibility as a laundry detergent additive. Enzyme and Microbial Technology. 38: 176-183.

Ganugula, R., Chakrabarti, R., and Rao, K.R.S.S. 2008. Distribution of Proteolytic Activity in the Different Protein Fractions of Tropical Shrimp Head Waste. Food Biotechnology. 22(1): 18-30.

Gildberg, A. and Stenberg, E., 2001. A new process for advanced utilisation of shrimp waste. Process Biochemistry. 36: 809-812.

Gunasekaran,J., Kannuchamy, N., Kannaiyan, S., Chakraborti, R. and Gudipati,V.,2015. Protein Hydrolysates from Shrimp (Metapenaeusdobsoni) Head Waste: Optimization of ExtractionConditions by Response Surface Methodology. Journal of Aquatic Food Product Technology.24(5):429-442.

Haard, N.F. and Simpson, B.K. (Eds.), 2000. Seafood Enzymes: Utilization and Influence on Postharvest Seafood Quality. Marcel Dekker Inc, New York, USA.

Herpandi, Huda, N., Rosma, A. and Wan Nadiah, W.A., 2012. Degree of hydrolysis and free tryptophan content of Skipjack Tuna (Katsuwonus pelamis) protein hydrolysates produced with different type of industrial proteases. International Food Research Journal. 19(3): 863-867.

Holanda, H.D. and Netto, F.M., 2006. Recovery of Components from Shrimp (Xiphopenaeus kroyeri) Processing Waste by Enzymatic Hydrolysis. Journal of Food Science. 71(5): C298-C303.

Kim, S. K. and Wijesekara, I., 2010. Development and biological activities of marine-derived bioactivepeptides: a review. Journal of Functional Foods. 2(1):1–9.

Liu, L., Wang,Y.,Peng, C.and Zhang,J., 2013. Optimizarion of the preparation of fish poteinanti – obesity hydrolysateusing respone surface methodology.International Journal of Molecular Sciences.14(2):3124-3139.

López-Saiz, C.M.,Hernández, J., Cinco-Moroyoqui, F.J., et al., 2016. Antimutagenic Compounds of White Shrimp (Litopenaeus vannamei): Isolation and Structural Elucidation. Hindawi Publishing Corporation.Article ID 8148215, 7 pages.

Mizani, M., Aminlari, M. and Khodabandeh, M., 2005. An Effective Method for Producing a Nutritive Protein Extract Powder from Shrimp-head Waste. Food Sci. Technol. Int., 11: 49-54.

Moure, T., Dominguez, H. and Parajo, J.C.,2006. Antioxydant properties of ultrafiltration-recovered soy protein factions from Industrial effluents and their hydrolysates. Process Biochem.,41: 447-456.

Muzaifa, M., Safriani, N. and Zakaria, F., 2012. Production of protein hydrolysates from fish by-product prepared by enzymatic hydrolysis. Int J Bioflux Soc, 5: 36-39.

Nedra, E.H.A., Hmidet, N., Olfa, G., Nahed, F.Z., Ali, B., and Nasri, M., 2011. Solvent-Stable Digestive Alkaline Proteinases from Striped Seabream (Lithognathus mormyrus) Viscera: Characteristics, Application in the Deproteinization of Shrimp Waste, and Evaluation in Laundry Commercial Detergents. 7: 1096-1110.

Nilsang, S., Lertsiri, S., Suphantharika, M., and Assavanig, A., 2005. Optimization of enzymatic hydrolysis of fish solubleconcentrate by commercial proteases. J. Food Eng. 70: 571–578.

Nguyễn Thị Ngọc Hoài, Ngô Thị Hoài Dương và Ngô Đăng Nghĩa, 2013. Tối ưu hóa quá trình thủy phân protein từ đầu tôm thẻ chân trắng (Penaeus vannamei) bằng alcalase theo phương pháp mặt đáp ứng. Tạp chí Khoa học - Công nghệ Thủy sản.

Nguyễn Công Hà và Lê Nguyễn Đoan Duy, 2011. Giáo trình kỹ thuật thực phẩm 3. Nhà xuất bản Trường Đại học Cần Thơ.

Randriamahatody, Z., Sylla, K. S. B., Nguyen, H. T. M., Donnay-Moreno, C., Azanamparany, L.R. and Bourgougnon, N., 2011. Proteolysis of shrimp by-products (Peaneus monodon) from Madagascar. CyTA - Journal of Food. 9(3): 220-228.

Saidi, S., Belleville, M.P., Deratani, A.and Amar, R.B., 2013. Optimization of peptide production by enzymatic hydrolysis of tuna dark muscle by-product using commercial proteases. African Journal of Biotechnology.12(13): 1533-1547.

Shahidi, F., Han, X.Q. and Synowiecki, J., 1995. Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chem.,53:285–293.

See, S.F., Hoo, L.L. and Babji, A.S., 2011. Optimization of enzymatic hydrolysis of Salmon (Salmo salar) skin by Alcalase. International Food Research Journal.18(4): 1359-1365.

Slizyte, R., Dauksas, E., Falch, E., Storro, I. and Rustad, T., 2005. Characteristics of protein fractions generated fromhydrolysed cod (Gadus morhua) by-products. Process Biochem. 40: 2021–2033.

Synowiecki, J. and Al-Khateeb, N.A.A.Q., 2000. The recovery of protein hydrolysate during enzymatic isolation of chitin from shrimp Crangon crangonprocessing discards. Food Chemistry.68: 147-152.

Võ Thị Anh Minh, 2014. Ảnh hưởng của tiền xử lý nguyên liệu đến hiệu quả thuỷ phân thịt đầu tôm sú bằng enzyme protease. Luận văn cao học. Trường Đại học Cần Thơ.Thành phố Cần Thơ.

Wilson-Sanchez, G., Moreno-Félix, C., Velazquez, C., et al., 2010. Antimutagenicity and Antiproliferative Studies of Lipidic Extracts from White Shrimp (Litopenaeus vannamei).Mar. Drugs.8:2795-2809.

Wu, C. H., Chen, H.M.and Shiau, C.Y., 2003. Free amino acids and peptides as related to antioxydantproperties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International.36(9–10):949–957.

Zhao, J., Huang, G.R., Zhang, M.N., Chen, W.W. and Jiang, J.X., 2011. Acid amin composition, molecular weight distribution and antioxydant stability of shrimp processing byproduct hydrolysate. American Journal of Food technology.6(10): 904-913.