Xây dựng ảnh của đồng cấu chuyển Singer hạng 3
Abstract
Tóm tắt
Article Details
Tài liệu tham khảo
Bruner, R. R., Ha, L. M. and Hung, N. H. V., (2005). On behavior of the algebraic transfer, Transactions of the American Mathematical Society. 357(2): 473- 487.
Bruner, R. R., 2009. An Adams spectral sequence Primer. Department of Mathematics. Wayne State University. Detroit MI 48202-3489. USA.
Chon, P. H. and Ha, L. M., 2012. On May spectral sequence and the algebraic transfer. Manuscirpta Mathematica. 138(1): 141-160.
Chon, P. H. and Ha, L. M., 2014. On the May spectral sequence and the algebraic transfer II. Topology and its Application. 178: 372-383.
Crossley, M. D., 1999. <Object: word/embeddings/oleObject160.bin>generators for <Object: word/embeddings/oleObject161.bin>and Singer’s homological transfer. Mathematische Zeitschrift. 230(3): 401–411.
Crossley, M. D.,1999. Monomial bases for <Object: word/embeddings/oleObject162.bin>over A(p). Transactions of the American Mathematical Society. 351(1): 171-192.
Ha, L. M., 2007. Sub-Hopf algebra of the Steenrod algebra and Singer transfer. Geometry and Topology Monographs. 11: 81-105.
Hung, N. H. V., 2005. The cohomology of the Steenrod algebra and representations of the general linear groups. Transactions of the American Mathematical Society. 375(10): 4065- 4089.
Hung, N. H. V. and Quynh, V. T. N., 2009. The image of the fourth algebraic transfer. Comptes rendus de l'Académie des Sciences,Paris, Ser. I. 347: pp 23-24, 1415-1418.
Nam, T. N., 2008. Transfert algébrique et action du groupe linéaire sur les puissances divisées modulo 2, Annales de l'Institut Fourier (Grenoble). 58: 1785-1837.
Quynh, V. T. N., 2007. On behavior of the fifth algebraic transfer. Geometry and Topology Monographs. 11(2007): 309-326.
Singer, W. M., 1989. The transfer in homological algebra. Mathematische Zeitschrift. 202: 493-523.
Sum, N., 2010. The negative answer to Kameko’s conjecture on the hit problem. Advances in Mathematics. 225: 2365-2390.
Sum, N., 2015. On the Peterson hit problem. Advances in Mathematics. 274: 432- 489.