Nguyễn Tấn Tài *

* Tác giả liên hệ (nttai60@tvu.edu.vn)

Abstract

The paper is to present the simulation results of the surface plasmon resonance (SPR) sensor using transfer matrix method for multilayer films. Surface plasmon resonance can be generated by depositing one layer of metal with thickness of less than 100 nm. The metal, which is Cu, is deposited on the bottom of the prism for sensing surface with the optimal thickness of around 50 nm. An optical sensor based on Cu deposited has the detection capability of about 99,5o/RIU, offering high sensitivity and easy fabrication of optical sensors. Moreover, the SPR sensor can be applied to measure biological elements such as fibrinogen protein, tau-protien concentrations in real-time manner for disease diagnosis. The SPR optical sensor has some advantages such as, small, low cost, easy manufacture and relatively high sensitivity.
Keywords: Diagnosis, Optical sensor, Surface plasmon resonance, Sensitivity

Tóm tắt

Bài báo trình bày kết quả mô phỏng cho cảm biến quang học được phủ đồng (Cu) để tạo hiệu ứng cộng hưởng bề mặt sử dụng ma trận truyền tải cho nhiều lớp kim loại. Hiệu ứng cộng hưởng bề mặt được tạo ra bằng cách phủ một lớp kim loại với độ dày thích hợp (d ≤ 100 nm) trên bề mặt một chất có chiết suất lớn như lăng kính. Kết quả mô phỏng cho thấy lớp phủ Cu với độ dày khoảng 50 nm đã cho thấy thành phần sóng từ trường nằm ngang (transverse magnetic field) tạo nên hiệu ứng cộng hưởng bề mặt với độ nhạy khoảng 99,5o/RIU. Kết quả này có thể dùng để tiến hành thực nghiệm chế tạo cảm biến quang học dùng để phát hiện và đo lường nồng độ các protein trong máu như fibrinogen (bệnh tim), tau-protein (bệnh mất trí nhớ) để ứng dụng trong chẩn đoán bệnh, giá thành rẻ hơn và độ nhạy tương đối cao.
Từ khóa: Cảm biến quang học, chẩn đoán, độ nhạy, hiệu ứng cộng hưởng bề mặt

Article Details

Tài liệu tham khảo

Abdelmalek F., 2001. Study of the optical properties of corroded gold-aluminum films using surface plasmon resonances. Thin solid film. 389(1): 296-300.

Altintas Z., France B., Ortiz J. O., Tothill I. E., 2016. Computationally modelled receptors for drug monitoring using an optical based biomimetic SPR sensor. Sensors and Actuators B: Chemical, 224: 726-737.

Chiang H. P., Chen C. W., Wu J. J., Li H. L., Lin T. Y., Sánchez E. J., Leung P. T., 2007. Effects of temperature on the surface plasmon resonance at a metal–semiconductor interface. Thin Solid Films, 515(17): 6953–6961.

Ctyroky J., Homola J., Lambeck P. V., Musa S., Hoekstra H. J. W. M., Harris R. D., Wilkinson J. S., Usievich B., Lyndin N. M., 1999. Theory and modeling of optical waveguide senors utilizing surface plasmon resonance. Sensors and Actuators B. 54(1-2): 66-73.

Csete M., Kohazi-Kis A., Vass Cs., Sipos A., Szekeres G., Deli M., Osvay K., Bor Zs., 2007. Atomic force microscopical and surface plasmon resonance spectroscopical investigation of sub-micrometer metal gratings generated by UV laser based two beams interference in Au-Ag bimetallic layers. Applied surface science. 253(19): 7662-7671.

Dostalek J., Ctyroky J., Homola J., Brynda E., Skalsky M., Nekvindova P., Spirkova J., Skvor J., Schrofel J., 2001. Surface plasmon resonance biosensor based on integrated optical waveguide. Sensors and Actuators B: Chemical. 76(1-3): 8-12.

Gupta B. D., Sharma Anuj K., 2005. Sensitivity evaluation of a multi-layered surface plasmon resonance based fiber optic sensor: a theoretical study. Sensors and Actuators B: Chemical. 107(1): 40-46.

Homola J., Yee S. S., 1996. Surface plasmon resonance sensor based on planar light pipe: theoretical optimization analysis. Sensors and Actuators B: Chemical, 37(3): 145-150.

Homola J., 1995. Optical fiber sensor based on surface plasmon excitation. Sensors and Actuators B: Chemical. 29(1-3): 401-405.

Iga M., Seki A., Watanabe K., 2004. Hetero-core structured fiber optic surface plasmon resonance sensor with silver film. Sensors and Actuators B: Chemical, 101(3): 368–372.

Liedberg B., Nylander C., Lundstrom I., 1995. Biosensing with surface Plasmon resonance – how it all started. Biosensors and Bioelectronics. 10(8): i-ix.

Miwa S., Arakawa T., 1996. Selective gas detection by means of surface plasmon resonance sensor. Thin solid film. 281-282: 466-468.

Melendez J., Carr R., Bartholomew D., Taneja H., Yee S., Jung C., Furlong C., 1997. Development of a surface Plasmon resonance sensor for commercial applications. Sensors and Actuators B: Chemical. 38-39(1-3): 375-379.

Otto A., 1968. Excitation of nonradiative surface plasmon waves in silver by the method frustrated total reflection. Zeitschrift fur Physik. 216(4): 398-410.

Orfanisdis S. J., 1999-2008. Electromagnetic waves and antennas. Rutgers University. Pp 311-313.

Patskovsky S., Kabashin A. V., Meunier M., Luong J. H.T., 2004. Near-infrared surface plasmon resonance sensing on a silicon platform. Sensors and Actuators B: Chemical. 97(2-3): 409–414.

Sharma A. K., Jha R., Gupta B. D., 2007. Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review. IEEE sensor journal. 7(8): 1118-1129.

Sharma A. K., Gupta B. D., 2005. On the sensitivity and the signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers. Optics Communications. 245(1-6):159-169.

Slavik R., Homola J., Ctyroky J., 1999. Single mode optical fiber surface plasmon resonance sensor. Sensors and Actuators B: Chemcial. 54(1-2): 74-79.

Nguyen T. T., Lee E. C., Ju H., 2014. Bimetasl coated optical fiber sensors based on surface plasmon resonance induced change in birefringence and intensity. Optics express. 22(5): 5590-5598.

Nguyen, T. T., Trinh K. T. L., Lee N. Y. and Ju H., 2017. Integration of a miniaturized polymerase chain reaction device with surface plasmon resonance fiber sensor for the construction of an inline all-in-one device for quantitative measurement of pathogenic bacteria. Sensors and Actuators B: Chemical. 242: 1-8.

Xu Y., Cottenden A., Jones N. B., 2005. An approximate theoretical model of surface plasmon resonance optical waveguide and fibre-optic sensor. Optical and Quantum Electronics. 37(12):1129-1140.

Zynio S. A., Samoylov A. V., Surovtseva1 E. R., Mirsky V. M., Shirshov Y. M., 2002. Bimetallic Layers Increase Sensitivity of Affinity Sensors Based on Surface Plasmon Resonance. Sensors. 2: 62-70.