Trịnh Hữu Nghiệm * Lê Trường Giang

* Tác giả liên hệ (thnghiem27@gmail.com)

Abstract

The main aim of this paper is to study the rates of convergence in distribution of normalized geometric sum to symmetric Laplace distribution by Trotter operator method. The rates of convergence are expressed with two different types of results, namely “large-O” and “small-o” approximation estimates.
Keywords: Laplace approximation, geometric sums, random sums, Poisson approximation, Trotter distance

Tóm tắt

Bài báo nghiên cứu tốc độ hội tụ của dãy tổng hình học về phân phối Laplace đối xứng bằng phương pháp toán tử Trotter. Tốc độ hội tụ được trình bày trong bài báo này dưới dạng xấp xỉ "O-lớn" và "o-nhỏ".
Từ khóa: Xấp xỉ Laplace, Tổng hình học, Tổng ngẫu Nhiên, Xấp xỉ Poisson, Khoảng cách Trotter

Article Details

Tài liệu tham khảo

Butzer, P. L., Hahn, L. and Westphal, U., 1975. On the rate of approximation in the central limit theorem, J. Approx. Theory13, 327-340.

Butzer, P.L. and L. Hahn, 1978. General theorems on rates of convergence in distribution of random variables I. General limit theorems, Journal of multivariate analysis 8, pp. 181- 201.

Butzer, P.L., Hahn, L., 1978. General theorems on rates of convergence in distribution of random variables II. Applications to the Stable Limit Laws and Weak Law of Large Numbers, Journal of multivariate analysis 8, pp. 202- 221.

Tran Loc Hung and Vu Thi Thao, 2013. Bounds for the Approximation of Poisson-binomial distribution by Poisson distribution, Journal of Inequalities and Applications, 1029-242X.

Tran Loc Hung and Le Truong Giang, 2014. On bounds in Poisson approximation for integer-valued independent random variables, Journal of Inequalities and Applications, 1029-242X-2014-291.

Kotz, S., Kozubowski, T. J., and Podgo'rski, K., 2001. The Laplace distribution and generalizations: A Revisit with Applications to Communications Economics, Engineering, and Finance, Birkhauser Boston, Inc., Boston, MA.

Pike, J. and Ren, H., 2012. it Stein's method and the Laplace distribution, arXiv:1210.5//5v1.

Sakalauskas, V., 1977. An estimate in the multidimensional limit theorem, Liet. matem. Rink, V. 17(4), pp. 195- 201.

Toda, A. A., 2012. Weak Limit of the Geometric Sum of Independent But Not Identically Distributed Random Variables, arXiv:1111.1786v2.

TrotterH. F., 1959. An elementary proof of the central limit theorem, Arch. Math. Basel 10, 226- 234.