Đặng Thị Mỹ Vân *

* Tác giả liên hệ (dangthimyvan@gmail.com)

Abstract

In this paper, we study some important properties of the upper and lower semicontinuity involving ordered cone of vector mappings. Using these generalized semicontinuities mappings together with some assumptions related to continuity property, we  investigate the properties of the solutions to weak and strong vector equilibrium problems in normed space. All the kinds of properties are considered such as  the compactness of the solution sets, the upper semicontinuity of the solution mappings and the well-posedness for the considered problems.
Keywords: Upper/lower semicontinuity involving ordered cone, equilibrium problems, stability, well-posedness under perturbations, uniquely well-posed under perturbations 

Tóm tắt

Trong bài báo này, chúng tôi nghiên cứu các tính chất của các hàm vector nửa liên tục trên và nửa liên tục dưới theo nón thứ tự. Sử dụng các hàm nửa liên tục suy rộng này cùng với một số giả thiết liên quan đến tính liên tục, chúng tôi đã nghiên cứu các tính chất của nghiệm bài toán cân bằng vector mạnh và cân bằng vector yếu trong không gian định chuẩn. Các tính chất được khảo sát ở đây bao gồm: tính compact của các tập nghiệm, tính nửa liên tục trên của các ánh xạ nghiệm và các dạng đặt chỉnh của các bài toán được xem xét.
Từ khóa: Nửa liên tục trên/dưới theo nón thứ tự, bài toán cân bằng, tính ổn định, sự đặt chỉnh theo các nhiễu, sự đặt chỉnh duy nhất theo các nhiễu

Article Details

Tài liệu tham khảo

Ait Mansour, M., Riahi, H., 2005. Sensitivity analysis for abstract equilibrium problems. Journal of Mathematical Analysis and Applications. 306: 684-691.

Anh, L.Q., Duy T.Q., Kruger, A.Y., Thao, N.H., 2013. Well-posedness for lexicographic vector equilibrium problems. In: Demyanov, V. F., Pardalos, P.M., Batsyn, M. (Eds.). Constructive Nonsmooth Analysis and Related Topics. Springer Optimization and Its Applications. Springer. New York, pp. 159-174.

Anh, L.Q., Khanh, P.Q., 2004. Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems. Journal of Mathematical Analysis and Applications. 294: 699-711.

Anh, L.Q., Khanh, P.Q., 2006. On the Hölder continuity of solutions to parametric multivalued vector equilibrium problems. Journal of Mathematical Analysis and Applications. 321: 308-315.

Anh, L.Q., Khanh, P.Q., 2007. On the stability of the solution sets of general multivalued vector quasiequilibrium problems. Journal of Optimization Theory and Applications. 135: 271-284.

Anh, L.Q., Khanh, P.Q., 2008. Sensitivity analysis for multivalued quasiequilibrium problems in metric spaces. Hölder continuity of solutions. Journal of Global Optimization. 42: 515-531.

Anh, L.Q., Khanh, P.Q., Van, D.T.M., 2012. Well-posedness under relaxed semicontinuity for bilevel equilibrium and optimization problems with equilibrium constraints. Journal of Optimization Theory and Applications.153: 42-59.

Anh, L.Q., Khanh, P.Q., Van, D.T.M., Yao, J.C., 2009. Well-posedness for vector quasiequilibria, Taiwanese Journal of Mathematics. 13: 713-737.

Anh, P.N., Tuan, P.M., Long, L.B., 2013. An interior approximal method for solving pseudomonotone equilibrium problems. Journal of Inequalities and Applications. 2013: 156-172.

Ansari, Q.H., Konnov, I.V., Yao, J.C., 2001. Existence of a solution and variational principles for vector equilibrium problems. Journal of Optimization Theory and Applications. 110: 81-492.

Aubin J.P. and Frankowska, H., 1990. Set-Valued Analysis. Birkhäuser. Boston, 461 pages.

Bianchi, M., Pini, R., 2003. A note on stability for parametric equilibrium problems. Operations Research Letters. 31: 445-450.

Blum, E., Oettli, W., 1994. From optimization and variational inequalities to equilibrium problems. The Mathematics Student. 63: 123-145.

Fu, J.Y., Wan, A.H., 2002. Generalized vector equilibrium problems with set-valued mappings. Mathematical Methods of Operations Research. 56: 259-268.

Göpfert, A., Tammer, C. Riahi, H., Zălinescu, C., 2003. Variational Methods in Partially Ordered Spaces. Springer-Verlag, Berlin Heidelberg, 350 pages.

Hadamard, J., 1902. Sur le problèmes aux dérivees partielles et leur signification physique. Princeton University Bulletin. 13: 49-52.

Hu, S., Papageorgiou, N.S., 1997. Handbook of Multivalued Analysis. Kluwer, London, 968 pages.

Iusem, A.N., Sosa, W., 2010. On the proximal point method for equilibrium problems in Hilbert spaces. Optimization. 59: 1259-1274.

Kimura, K., Liou, Y.C., Wu, S.Y., Yao, J.C., 2008. Well-posedness for parametric vector equilibrium problems with applications. Journal of Industrial and Management Optimization. 4: 313-327.

Morgan, J., Scalzo, V., 2006. Discontinuous but well-posed optimization problems. SIAM Journal on Optimization. 17: 861-870.

Muu, L.D., Quy, N.V., 2015. On existence and solution methods for strongly pseudomonotone equilibrium problems. Vietnam Journal of Mathematics. 43: 229-238.

Quoc, T.D., Muu, L.D., Nguyen, V.H., 2008. Extragradient algorithms extended to equilibrium problems. Optimization. 57: 749-776.

Tikhonov, A.N., 1966. On the stability of the functional optimization problem. USSR Computational Mathematics and Mathematical Physics. 6: 28-33.

Zolezzi,T., 1995. Well-posedness criteria in optimization with applications to the calculus of variations. Nonlinear Analysis. 25: 437-453.

Zolezzi,T., 2001. Well-posedness and optimization under perturbations. Annals of Operations Research. 101: 351-361.