Lê Hồ Khánh Hỷ * , Nguyễn Thu Hồng , Phan Bảo Vy , Đặng Quốc Minh , Đoàn Thị Thiết , Đào Việt Hà Phạm Xuân Kỳ

* Tác giả liên hệ (lehokhanhhy@gmail.com)

Abstract

This paper is concerned with certain properties of chitosan nanoparticles synthesized by ionic gelation method. These synthesized nanoparticles have an average diameter of 12 nm. Their physicochemical properties were tested by different chemical and physical analysis techniques such as FT-IR, XRD, and SEM. In addition, their antibacterial activity was also studied to evaluate the potential applications of chitosan nanoparticles.
Keywords: Chitosan, nanoparticles, antibacterial activity, small size

Tóm tắt

Bài báo này đề cập đến một số đặc tính của hạt nanochitosan được tổng hợp bằng phương pháp tạo gel ion. Các hạt nanochitosan hình thành có kích thước siêu nhỏ, trung bình 12 nm. Các đặc tính hóa lý của hạt nanochitosan được đánh giá thông qua các kỹ thuật phân tích hóa lý khác nhau như FT-IR, XRD, SEM. Ngoài ra, đặc tính kháng khuẩn của các hạt siêu nhỏ này cũng được chúng tôi quan tâm, góp phần tìm hiểu những tiềm năng mà hạt nanochitosan mang lại.
Từ khóa: Chitosan, Nanochitosan, đặc tính, kích thước nhỏ

Article Details

Tài liệu tham khảo

Agnihotri, S.A., Mallikarjuna, N.N., Aminabhavi, T.M. 2004. Recent Advances on Chitosan-based Micro and Nanoparticles in Drug Delivery. Journal of Controlled Release 100: 5-28.

Aider, M. 2010. Chitosan application for active bio-based films production and potential in the food industry: Review. LWT - Food Science and Technology 43(6): 837–842.

Andrews, J. M., 2001. Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy 48 (1): 5–16.

Bae, K., Jun, E. J., Lee, S. M., Paik, D. I., Kim, J. B. 2006. Effect of water soluble reduced chitosan on Streptococcus mutans, plaque regrowth and biofilmvitality. Clinical Oral Investigations 10: 102–107.

Chattopadhyay, D.P., Inamdar, M.S. 2012. Studies on Synthesis, Characterization and Viscosity Behaviour of Nano Chitosan. Research Journal of Engineering Sciences 1(4): 9-15

Du, W. L., Niu, S. S., Xu, Y. L., Xu, Z. R., Fan, C. L. 2009. Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydrate Polymers 75: 385–389.

Đỗ Trường Thiện. 2010. Báo cáo kết quả nghiên cứu Đề tài KC02.09/06-10: Nghiên cứu chế tạo vật liệu nanochitosan ứng dụng trong dược phẩm và trong nông nghiệp.

Ge, H., Huang, S. 2010. Microwave Preparation and Adsorption Properties of EDTA-Modified Cross-Linked Chitosan. Journal of Applied Polymer Science 115: 514–519.

Helander, I.M., Nurmiaho-Lassila, E.L., Ahvenainen, R., Rhoades, J., Roller, S. 2001. Chitosan disrupts the barrier properties of the outer membrane of Gram negative bacteria. International Journal of Food Microbiology 71: 235–244.

Holappa, J., Martha, H., Mar, M., Ogmundur, R., Tomas, A., Pasi, S. 2006. Antimicrobial activity of chitosan N-betainates, Carbohydrate Polymers 65: 114–118.

Jeon, Y. J., Park, P. J., Kim, S. K. 2001. Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydrate Polymers 44:71–76.

Jing, S. B., Li, L., Ji, D., Takiguchi, Y., Yamaguchi, T. 1997. Effect of chitosan on renal function in patients with chronic renal failure. Journal of Pharmacy and Pharmacology 49(7): 721 - 723.

Kumirska, J., Czerwicka, M., Kaczyński, Z., Bychowska, A., Brzozowski, K., Thöming, J., Stepnowski, P. 2010. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan. Marine Drugs 8: 1567-1636.

McFarland, J., Jama, M.D., 1907. The nephelometer: an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. XLIX (14):1176-1178.

Mirhashemi, A. H. , Bahador, A., Kasae, M. Z., Daryakenari, G. H., Ahmad Akhondi, M. S., Sodagar, A. 2013. Antimicrobial Efect of Nano-Zinc Oxide and Nano-Chitosan Particles in Dental Composite Used in Orthodontics. Journal of Medical Bacteriology. 2 (3, 4): 1-10.

Nguyễn Anh Dzũng, Nguyễn Thị Ngọc Hà, Đặng Thị Hồng Vân, Nguyễn Thị Lan Phương, Nguyễn Thị Như Quỳnh, Đinh Minh Hiệp, Lê Văn Hiệp. 2011. Chitosan Nanoparticle as a Novel Delivery System for A/H1N1 Influenza Vaccine: Safe Property and Immunogenicity in Mice. World Academy of Science, Engineering and Technology 5: 1228-1235.

Nguyễn Thị Kim Cúc, Trần Thị Kim Dung, Phạm Việt Cường. 2014. Assessment of antifungal activity of turmeric essential oil-loaded chitosan nanoparticles. Journal of Chemical, Biological and Physical Sciences 4(3): 2347-2356.

No, K. H., Park, N. Y., Lee, S. H., Meyers, S. P. 2002. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology 74: 65–72.

Nye, K.J., Fallon, D., Frodsham, D. 2002. An evaluation of the performance of XLD, DCA, MLCB, and ABC agars as direct plating media for the isolation of Salmonella enterica from faeces. Journal of Clinical Pathology 55 (4): 286–8.

Patel, J. K., Jivani, N. P. 2009. Chitosan Based Nanoparticles in Drug Delivery. International Journal of Pharmaceutical Sciences and Nanotechnology 2(2): 517-522.

Pinto, R. J., Fernandes, S.C., Freire, C. S. 2011. Antibacterial activity of optical transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles. Carbohydrate Research 348: 7-83.

Qi, Li., Xu, Zirong., Jiang, X., Hu, C., Zou, X. 2004. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research 339: 2693–2700.

Qin, C., Li, H., Xiao, Q., Liu, Y., Zhu, J., Du, Y. 2006. Water-solubility of chitosan and its antimicrobial activity. Carbohydrate Polymers 63: 367-374.

Richardson, Simon.C.W., Kolbe Hanno, V.J., Duncan, R. 1999. Chitosan copolymers for intranasal Delivery of Insulin. C.A, Vol 130, N025, 1141(342,853u), England.

Sadovski, A. Y. 1977. Technical note: Acid sensitivity of freeze injured salmonellae in relation to their isolation from frozen vegetables by pre-enrichment procedure. International Journal of Food Science and Technology 12:85-91.

Sarwar, A., Katas, H., Zin, N. M. 2014. Antibacterial effects of chitosan- tripolyphosphate nanoparticles: impact of particle size molecular weight. Journal of Nanoparticle Research 16: 2517.

Sivakamia, M.S., Thandapani, G., Jayachandran, V., Hee-Seok, J., Se-Kwon, K., Sudhaa, P.N. 2013. Preparation and characterization of nanochitosan for treatment wastewaters. International Journal of Biological Macromolecules 57: 204– 212.

Tamura, A., Satoh, E., Kashiwada, A., Matsuda, K., Yamada, K. 2010. Removal of Alkylphenols by the Combined Use of Tyrosinase Immobilized on Ion Exchange Resins and Chitosan Beads. Journal of Applied Polymer Science 115: 137–145.

Trapani, A., Sitterberg, J., Bakowsky, U., Kissel, T. 2009. The potential of glycol chitosan nanoparticles as carrier for low water soluble drugs. International Journal of Pharmaceutics 375: 97–106.

Tsai, G.J., Su, W.H. 1999. Antibacterial activity of shrimp chitosan against Escherichia coli. Journal of Food Protection 62: 239–243.

Vishu Kumar, A. B., Varadaraj, M. C., Lalitha, R. G., Tharanathan, R. N. 2004. Low molecular weight of chitosans: preparation with the aid of papain and characterization. Biochimica et Biophysica Acta 1670(2):137–146.

Wang, X., Du, Y., Liu, H. 2004. Preparation, characterization and antimicrobial activity of chitosan–Zn complex, Carbohydrate Polymers 56: 21–26.

Zhang, H-L., Wu, S-H., Tao, Y, Zang, L-Q., Su, Z-Q. 2010. Preparation and Characterization of Water Soluble Chitosan Nanoparticles as Protein Delivery System. Journal of Nanomaterials 2010: 1-5.

Zhang, Y., Xue, C., Xue, Y., Gao, R., Zhang, X. 2005. Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohydrate Research 340: 1914–1917.