NHậN DạNG Ký Tự Số VIếT TAY BằNG GIảI THUậT MáY HọC
Abstract
Tóm tắt
Article Details
Tài liệu tham khảo
L. Breiman, J.H. Friedman, R.A. Olshen and C. Stone. Classification and Regression Trees. Wadsworth International, 1984.
L. Breiman. Bagging predictors. Machine Learning 24(2):123–140, 1996.
L. Breiman. Random forests. Machine Learning 45(1):5–32, 2001.
C.C. Chang and C.J. Lin. Libsvm – a library for support vector machines. 2001. http://www.csie.ntu.edu.tw/cjlin/libsvm.
T.N. Do, S. Lallich, N.K. Pham and P. Lenca. Classifying very-high-dimensional data with random forests of oblique decision trees. in Advances in Knowledge Discovery and Management Vol. 292, Springer-Verlag, 2009, pp. 39-55.
M. Douze, M., H. Jégou, H. Sandhawalia, L. Amsaleg, and C. Schmid. Evaluation of GIST descriptors for web-scale image search. In Proceedings of the ACM International Conference on Image and Video Retrieval, 2009, pp. 1–8.
Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Computational Learning Theory, 1995, pp. 23–37.
B. Kégl and R. Busa-Fekete. Boosting products of base classifiers. In Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 497–504.
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. In Proceedings of the IEEE, 1998, pp. 2278–2324.
LeCun, Y. and C. Cortes. The MNIST database of handwritten digits. 1989.
D. Lowe. Distinctive image features from scale invariant keypoints. International Journal of Computer Vision, 2004, pp. 91–110.
S. Murthy, S. Kasif, S. Salzberg and R. Beigel. Oc1: Randomized induction of oblique decision trees. In Proceedings of the Eleventh National Conference on Artificial Intelligence, 1993, pp. 322–327.
A. Oliva and A. Torralba. Modeling the shape of the scene : A holistic representation of the spatial envelope. International Journal of Computer Vision 42, 145–175, 2001.
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
Y. Simard, D. Steinkraus, J. Platt. Best Pratices for Convolutional Neural Network Applied to Visual Document Analysis. in Intl Conference on Document Analysis and Recogntion, 2003, pp. 958-962.
V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1995.
H. Witten and E. Frank. Data Mining : Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco, 2nd edition, 2005.