TẬP BIẾN PHÂN TIỆM CẬN CẤP HAI VÀ ỨNG DỤNG
Abstract
Tóm tắt
Article Details
Tài liệu tham khảo
Anh, N.L.H., Khanh, P.Q. and Tung, L.T., 2011. Variational sets: Calculus and applications to nonsmooth vector optimization. Nonlinear Analysis TMA.74: 2358-2379.
Anh, N.L.H., Khanh, P.Q. and Tung, L.T., 2011. Higher-order radial derivatives and optimality conditions in nonsmooth vector optimization. Nonlinear Analysis TMA.74: 7365-7379.
Aubin, J.-P. and Frankowska, H., 1990. Set-valued Analysis. Birkhäuser, boston. 461 pp.
Diem, H.T.H., Khanh, P.Q. and Tung, L.T., 2014. On higher-order sensitivity analysis in nonsmooth vector optimization. Journal of Optimization Theory and Applications.162: 463-488.
Giorgi, G., Jiménez, B. and Novo, V., 2010. An overview of second order tangent sets and their application to vector optimization. Boletín de la Sociedad Española de Matemática Aplicada.52: 73-96.
Gutierréz, C., Jiménez, B. and Novo, V., 2009. New second-order directional derivative and optimality conditions in scalar and vector optimization. Journal of Optimization Theory and Applications. 142: 85-106.
Kalashnikov, V., Jadamba, B. and Khan, A.A., 2006. First and second order optimality conditions in set optimization. In: Dempe, S. and Kalashnikov,V. (Editors). Optimization with multivalued mappings. Theory, applications, and algorithms, Optimization and Its Applications. Springer, New York. 2: 265-276.
Khan, A.A. and Tammer, C., 2013. Second-order optimality conditions in set-valued optimization via asymptotic derivatives. Optimization.62: 743-758.
Khanh P.Q. and Tuan, N.D., 2008. Variational sets of multivalued mappings and a unified study of optimality conditions. Journal of Optimization Theory and Application.139: 45-67.
Khanh P.Q. and Tung, L.T., 2012. Local uniqueness solution to Ky Fan vector inequalities using approximations as derivatives. Journal of Optimization Theory and Applications. 155: 840-854.
Khanh P.Q. and Tung, L.T., 2013. First and second-order optimality conditions using approximation for vector equilibrium problems with constraints. Journal of Global Optimization.55: 901-920.
Khanh P.Q. and Tung, L.T., 2014. First and second-order optimality condition for multi-objective fraction programming. TOP. Online first. DOI 10.1007/s11750-014-0347-7.
Lê Thanh Tùng, 2013. Điều kiện tối ưu cho bài toán cân bằng đa trị sử dụng tập xấp xỉ đa trị. Kỷ yếu hội nghị khoa học tự nhiên, Nxb Đại học Cần Thơ. 19-27.
1Li, S.J. and Zhai, J., 2013. Second-order asymptotic differential properties and optimality conditions for weak vector variational inequalities. Optimization Letter. 6: 503-523.
Li, S.J., Zhu, S.K. and Li, X.B., 2012. Second-order optimality conditions for strict efficiency of constrained set-valued optimization. Journal of Optimization Theory and Applications.155: 534-577.
Penot, J.P., 1998. Second-order conditions for optimization problems with constraints. SIAM Journal of Control Optimization. 37: 303-318.
Wang, Q.L., Li, S.J. and Teo, K.L., 2011. Higher-order generalized adjacent derivative and applications to duality for set valued Optimization. Taiwanese Journal of Mathematics. 15: 1021-1036.