PHÂN LỚP DỮ LIỆU VỚI GIẢI THUẬT NEWTON SVM
Abstract
Tóm tắt
Article Details
Tài liệu tham khảo
K. Bennett and C. Campbell. Support vector ma chines: Hype or hallelujah?. SIGKDD Explorations, 2(2): 1-13, 2000.
B. Boser, I. Guyon, and V. Vapnik. An training algorithm for optimal margin classifiers. ACM Annual Workshop on Computational Learning Theory, pages 144-152, 1992.
L. Breiman. Arcing classifiers. The annals of statistics, 26(3): 801–849, 1998.
C-C. Chang and C-J. Lin. Libsvm - a library for support vector machines. 2001-2014.
N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, 2000.
Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. in EuroCOLT, 1995, pp. 23–37.
G. Golub and C. van Loan. Matrix Computations. The John Hopkins University Press,Baltimore, Maryland, 1996.
I. Guyon. Web page on svm applications. 1999-2014.
L. Jinyan and L. Huiqing. Kent ridge bio-medical dataset repository. 2002.
O. Mangasarian. A finite newton method for classification problems. Data Mining Institute Technical Report 01-11, Computer Sciences Department, University of Wisconsin, 2001.
J. Platt. Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods - Support Vector Learning, pages 185-208, 1999.
F. Poulet and T-N. Do. Mining very large datasets with support vector machine algorithms. Enterprise Information Systems V, pages 177-184, 2004.
Liu H. Syed, N. and K. Sung. Incremental learning with support vector machines. ACM SIGKDD, 1999.
S. Tong and D. Koller. Support vector machine active learning with applications to text classification. ICML, pages 999-1006, 2000.
V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1995.