Tran Thi Le Trang *

* Tác giả liên hệTran Thi Le Trang

Abstract

In this study, 5 levels of nitrogen (6.18; 12.35; 18.53; 24.7 and 30.88 mg/l) were tested in order to evaluate the effect of this nutrient on growth, protein and lipid content of S. platensis cultured in seawater under laboratory conditions. The results showed that, the alga cultured at higher nitrogen levels (18.53; 24.7 and 30.88 mg/l) gave higher maximum biomass (4.90; 4. and 4.35 g/l) compared to the lower levels (6.18 and 12.35 mg/l) (3.06 and 3.46 g/l) (p < 0.05) which achieved on day 8. However, there were no significant differences about maximum biomass gained among nitrogen levels of 18.53; 24.7 and 30.88 mg/l or 6.18 and 12.35 mg/l (p > 0.05). Similarily, the highest nitrogen levels gave the highest content of protein but lowest content of lipid and vice versa. Specifically, the highest nitrogen levels (30,88 mg/l), the protein and lipid contents obtained 69.64 and 10.12% of the total dry weight, respectively while this figures at the lowest nitrogen level (6.18 mg/l) were 52.29 and 13.48% of the total dry weight, respectively (p < 0.05). Summary, the most suitable nitrogen level for culturing S. platensis was 18.53 mg/l in order to obtain the optimal values of growth, protein as well as lipid content and economic efficiency.
Keywords: Growth, nitrogen, protein and lipid content, Spirulina platensis

Tóm tắt

Trong nghiên cứu này, 5 mức nitơ (6,18; 12,35; 18,53; 24,7 và 30,88 mg/l) được thử nghiệm nhằm đánh giá ảnh hưởng của yếu tố này lên sinh trưởng, hàm lượng protein và lipid của tảo S. platensis nước mặn trong điều kiện thí nghiệm. Kết quả cho thấy, tảo được nuôi ở các mức nitơ cao hơn (18,53; 24,7 và 30,88 mg/l) cho sinh khối cực đại lớn hơn (4,90; 4,79 và 4,35 g/L) so với các mức nitơ thấp hơn (6,18 và 12,35 mg/l) (3,06 và 3,46 g/L) (p < 0,05) ở ngày nuôi thứ 8. Không có sự khác biệt thống kê về sinh khối cực đại đạt được giữa các mức nitơ 18,53; 24,7 và 30,88 mg/l hay 6,18 và 12,35 mg/l (p > 0,05). Tương tự, các mức nitơ càng cao hàm lượng protein đạt được càng cao nhưng hàm lượng lipid đạt được lại càng thấp và ngược lại. Cụ thể, ở mức nitơ cao nhất (30,88 mg/l) hàm lượng protein và lipd đạt được lần lượt là 69,64 và 10,12% khối lượng khô, trong khi đó, con số này ở mức nitơ thấp nhất (6,18 mg/l) lần lượt là 52,29 và 13,48% khối lượng khô (p < 0,05). Có thể thấy rằng, mức nitơ tốt nhất cho tảo S. platensis là 18,53 mg/l nhằm đạt được các giá trị tối ưu về sinh trưởng, hàm lượng protein, lipid và hiệu quả kinh tế.
Từ khóa: Hàm lượng protein và lipid, nitơ, sinh trưởng, Spirulina platensis

Article Details

Tài liệu tham khảo

Dương Thị Hoàng Oanh, Vũ Ngọc Út và Nguyễn Thị Kim Liên, 2011. Nghiên cứu khả năng xử lý nước thải của tảo Spirulina platensis. Kỷ yếu Hội nghị Khoa học Thủy sản lần IV. Trường Đại học Cần Thơ, trang 15-27.

Trần Thị Lê Trang, Hoàng Thị Bích Mai, Nguyễn Tấn Sỹ, Trần Văn Dũng, 2012. Nghiên cứu ảnh hưởng của pH và độ mặn đến sinh trưởng của quần thể tảo Spirulina platensis. Tạp chí Hoạt động Khoa học, Bộ Khoa học và Công nghệ, số 10, trang 73 – 76.

Ahsan M., Habib B., Parvin M., Huntington TC., Hasan MR., 2008. A review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish. FAO Fisheries and Aquaculture Circular No. 1304. Fima/C1034 (En). FAO, Food and Agriculture Organization of The United Nations, Rome.

AOAC, 1998. Official methods of analysis. Association of Official Analytical Chemists, Arlington, VA.

Azov Y. and Goldman JC., 1982. Free ammonia inhibition of algal photosynthesis in intensive culture. Applied and Environmental Microbiology, 43 (4): 735-739.

Belay A., 2002. The potential application of Spirulina (Arthrospira) as a nutritional and therapeutic supplement in health management. The Journal of the American Nutraceutical Association 5(2): 1-24.

Bligh, EG., and Dyer, WJ., 1959. A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol. 37, 911–917.

Bulut Y., 2009. The investigations on the possibility of increase lipid content of Chlorella (Master Thesis). Cukurova Univ., Institute of Science and Technology, Biotechnology Department,. 62 p. Turkey.

Cifferi O. and Tiboni O., 1985. The Biochemistry and industrial Potential of Spirulina. Annual Review of Microbiology 39: 503-526.

Cohen Z., 1999. Chemicals from microalgae (Eds.). Taylor & Francis Ltd. UK. p. 418.

Costa JAV., Colla LM., Duarte Filho P., 2003. Spirulina platensis growth in open raceway ponds using fresh water supplemented with carbon, nitrogen and metal ions, Zeitschrift für Naturforsch.58c: 76-80.

De Loura, IC., Dubacq, JP., and Thomas, JC., 1987. The effects of nitrogen deficiency on pigments and lipids of Cyanobacteria. Plant Physiol. 83, 838-843.

Falquet J., 1997. The nutritional aspects of Spirulina. Antenna Technology.

Gershwin M.E., Belay A. 2007. Spirulina in Human Nutrition and Health. CRC Press. 312p.

Guillard RRL., 1973. Culture Methods and Growth Measurements, Division Rates in Handbook of Phycological methods Stein JR (Ed.). Chambridge University Pres, Chambridge. pp. 289-311.

Harrison PJ., Thomson PA. and Calderwood GS. 1990. Effects of nutrient and light limitation on the biochemical composition of phytoplankton. Journal of Applied Phycology. Kluwer Academic Publishers. Belgium. 2: 45-56.

Hu Q., 2004. Environmental effects on cell composition. In: Richmond A, editor. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Oxford: Blackwell Science Ltd, p 83–93.

Lavens P., and P. Sorgeloos (Eds)., 1996. Manual on the production and use of live food for aquaculture. FAO Fisheries Technical Paper No. 361. Rome, FAO.

Li Y., Horsman M., Wang B., Wu N., Lan CQ., 2008. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol., 81: 629-636.

Olguin E., Galicia S., Angulo-Guerrero O., Hernndez E., 2001. The effect of low light flux and nitrogen deficiency on the chemical composition of Spirulina sp. (Arthrospira) grown on digested pig waste. Bioresour. Technol. 77: 19-24.

Pauw D., Verbovent NJ., Claus C., 1983. Large scale microalgae production for nursery rearing of marine bivalves. Aquacultural Engineering 2: 27-47.

Piorreck M., Baasch KH., Pohl P., 1984. Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry, 23(2): 207-216.

Prabakaran P. and Ravindran AD., 2012. Influence of different Carbon and Nitrogen sources on growth and CO2 fixation of microalgae. Advances in Applied Science Research, 3 (3):1714-1717.

Pruvost J., Van Vooren G., Cogne G., Legrand J., 2009. Investigation of biomass and lipids production with Neochloris oleoabundansin photobioreactor. Bioresour. Technol. 10(23): 5988-5995.

Richmond A. and J.U. Grobbelaar, 1986. Factors affecting the output rate of Spirulina platensis with reference to mass cultivation. Biomass 10: 253-264.

Richmond A., 1986. Spirulina. In: Borowitzka, M.A. and Borowitzka, L.J. (eds.) Microalgal Biotechnology. Cambridge: Cambridge University Press, 85-121.

Sukenik A., Zmora O. and Carmeli Y., 1993. Biochemical quality of marine unicellular algae with special emphasis on lipid compositon. II. Nannochloropsis sp. Aquaculture, Elsiver Science Publishers. Amsterdam 177: 313-326.

Tang G. and Suter P.M., 2011. Vitamin A, Nutrition, and Health Values of Algae: Spirulina, Chlorella, and Dunaliella. Journal of Pharmacy and Nutrition Sciences 1, 111-118.

Tedesco M., and Duerr E., 1989. Light, temperature and nitrogen starvation effects on the total lipid and fatty acid content and composition of Spirulina UTEX 1928. J. Appl. Phycol. 1: 201-209.

Uslu, L., Isik, O., Koc, K., and Goksan, T., 2011. The effects of nitrogen deficiencies on the lipid and protein contents of Spirulina platensis. African Journal of Biotechnology, 10 (3): 386-389.

Vonshak A., Kancharaksa N., Bunnag B. and Tanticharoen M., 1996. Role of light and photosynthesis on the acclimation process of the cyanobacterium Spirulina platensis to salinity stress. J. Applied phycol. 8, 119-124.

Zar JH., 1999. Biostatistical Analysis. Upper Saddle River. Prentice Hall, New Jersey. 4th Edition. Cap 12. pp. 231-272.

Zhila NO., Kalacheva GS., Volova TG., 2005. Influence of nitrogen deficiency on biochemical composition of the green alga Botryococcus. J. Appl. Phycol. 17: 309-315.