Effect of feeding a Saccharomyces cerevisiae Fermentation product on cytokine gene expression broiler chickens
Abstract
The study was conducted to evaluate the impact of supplementing Saccharomyces cerevisiae Fermentation Product (SCFP) in the diet on the gene expression levels of cytokines IL-12, IFN-γ, and IL-13 in broiler chickens raised under open farm conditions. A total of 192 one-day-old broiler chickens (Ri x Luong Phuong) were randomly assigned to one of the two experimental groups, namely the control group (ĐC) and the SCFP-supplemented group (Diamond V XPCTM (1,25kg/ton of feed). Spleen samples were collected at 85 days old (1 chicken/1 cage, 16 chickens/experimental group). The results showed that the diet supplemented with SCFP significantly upregulated the gene expression levels of IL-12 and IL-13, and downregulated the expression level of IFN-γ (p<0,01) in the spleen. These findings suggest that SCFP supplementation in the diet may support the effects of pro-inflammatory and anti-inflammatory cytokines by simultaneously increasing the expression levels of both IL-12 and IL-13 and contribute to maintaining the balance of Th1 and Th2 cytokines in broiler chickens.
Tóm tắt
Nghiên cứu được tiến hành với mục đích đánh giá ảnh hưởng của việc bổ sung chế phẩm lên men Saccharomyces cerevisiae (SCFP) vào khẩu phần ăn đến mức độ biểu hiện của một số gene cytokine IL-12, IFN-γ và IL-13 ở gà thịt được nuôi trong điều kiện chuồng hở. Tổng cộng 192 con gà 1 ngày tuổi (Ri x Lương Phượng) được phân ngẫu nhiên vào 2 nhóm thí nghiệm, gồm nhóm đối chứng (ĐC) và nhóm bổ sung SCFP (Diamond V XPCTM, liều 1,25kg/tấn thức ăn). Mẫu lách gà được thu thập ở 85 ngày tuổi (1 gà/1 ô chuồng, 16 gà/1 nghiệm thức). Kết quả cho thấy khẩu phần ăn của gà được bổ sung SCFP điều chỉnh tăng đáng kể mức độ biểu hiện gene của IL-12 và IL-13 và giảm mức độ biểu hiện gene của IFN-γ (p<0,01). Điều này cho thấy vai trò của SCFP được bổ sung trong khẩu phần ăn của gà có thể hỗ trợ tác dụng của các cytokine gây viêm và chống viêm bằng cách gia tăng mức độ biểu hiện đồng thời của cả IL-12 và IL-13, từ đó góp phần duy trì sự cân bằng của các cytokine Th1 và Th2 ở gà thịt.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Abdellatif, B., McVeigh, C., Bendriss, G., & Chaari, A. (2020). The promising role of probiotics in managing the altered gut in autism spectrum disorders. International Journal of Molecular Sciences, 21(11), 1–24. https://doi.org/10.3390/ijms21114159
Aleebrahim-Dehkordi, E., Molavi, B., Mokhtari, M., Deravi, N., Fathi, M., Fazel, T., Mohebalizadeh, M., Koochaki, P., Shobeiri, P., & Hasanpour-Dehkordi, A. (2022). T helper type (Th1/Th2) responses to SARS-CoV-2 and influenza A (H1N1) virus: From cytokines produced to immune responses. In Transplant Immunology (Vol. 70). Elsevier B.V. https://doi.org/10.1016/j.trim.2021.101495
Aristides, L. G. A., Venancio, E. J., Alfieri, A. A., Otonel, R. A. A., Frank, W. J., & Oba, A. (2018). Carcass characteristics and meat quality of broilers fed with different levels of Saccharomyces cerevisiae fermentation product. Poultry Science, 97(9), 3337–3342. https://doi.org/10.3382/ps/pey174
Chou, W. K., Park, J., Carey, J. B., McIntyre, D. R., & Berghman, L. R. (2017). Immunomodulatory effects of Saccharomyces cerevisiae fermentation product supplementation on immune gene expression and lymphocyte distribution in immune organs in broilers. Frontiers in Veterinary Science, 4(MAR). https://doi.org/10.3389/fvets.2017.00037
Costa, M. C., Bessegatto, J. A., Alfieri, A. A., Weese, J. S., Filho, J. A. B., & Oba, A. (2017). Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. PLoS ONE, 12(2). https://doi.org/10.1371/journal.pone.0171642
Cox, C. M., Stuard, L. H., Kim, S., McElroy, A. P., Bedford, M. R., & Dalloul, R. A. (2010). Performance and immune responses to dietary β-glucan in broiler chicks. Poultry Science, 89(9), 1924–1933.
https://doi.org/10.3382/ps.2010-00865
Davidson, N. J., Hudak, S. A., Lesley, R. E., Menon, S., Leach, M. W., & Rennick, D. M. (1998). IL-12, But Not IFN-, Plays a Major Role in Sustaining the Chronic Phase of Colitis in IL-10-Deficient Mice 1. In The Journal of Immunology (Vol. 161). http://journals.aai.org/jimmunol/article-pdf/161/6/3143/1089399/im189803143o.pdf
Djordjevic, S. P., & Morgan, B. S. (2019). A One Health genomic approach to antimicrobial resistance is essential for generating relevant data for a holistic assessment of the biggest threat to public health. In Microbiology Australia (Vol. 40, Issue 2, pp. 73–76). CSIRO. https://doi.org/10.1071/MA19021
Ho, D. T., Pham, H. H. S., Aota, W., Matsubayashi, M., Tsuji, N., & Hatabu, T. (2021). Reduction of macrophages by carrageenan decreases oocyst output and modifies local immune reaction in chick cecum with Eimeria tenella. Research in Veterinary Science, 139, 59–66. https://doi.org/10.1016/j.rvsc.2021.07.003
Hong, K., Chu, A., Lú, B. R., Berg, E. L., & Ehrhardt, R. O. (1999). IL-12, Independently of IFN-, Plays a Crucial Role in the Pathogenesis of a Murine Psoriasis-Like Skin Disorder. In The Journal of Immunology (Vol. 162). http://journals.aai.org/jimmunol/article-pdf/162/12/7480/1100515/im129907480p.pdf
Ivashkiv, L. B., & Donlin, L. T. (2014). Regulation of type i interferon responses. In Nature Reviews Immunology (Vol. 14, Issue 1, pp. 36–49). https://doi.org/10.1038/nri3581
Jin, W., Zheng, Y., & Zhu, P. (2022). T cell abnormalities in systemic sclerosis. Autoimmunity Reviews, 21(11), 103185. https://doi.org/10.1016/J.AUTREV.2022.103185
Kriegel, M. A., Tretter, T., Blank, N., Schiller, M., Gabler, C., Winkler, S., Kalden, J. R., & Lorenz, H. M. (2006). Interleukin-4 supports interleukin-12-induced proliferation and interferon-γ secretion in human activated lymphoblasts and T helper type 1 cells. Immunology, 119(1), 43–53. https://doi.org/10.1111/j.1365-2567.2006.02404.x
Lee, Y., Lee, S. hyen, Gadde, U. D., Oh, S. taek, Lee, S. jin, & Lillehoj, H. S. (2017). Dietary Allium hookeri reduces inflammatory response and increases expression of intestinal tight junction proteins in LPS-induced young broiler chicken. In Research in Veterinary Science (Vol. 112, pp. 149–155). Elsevier B.V. https://doi.org/10.1016/j.rvsc.2017.03.019
Liu, S., Diao, L., Huang, C., Li, Y., Zeng, Y., & Kwak-Kim, J. Y. H. (2017). The role of decidual immune cells on human pregnancy. In Journal of Reproductive Immunology (Vol. 124, pp. 44–53). Elsevier Ireland Ltd. https://doi.org/10.1016/j.jri.2017.10.045
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
Maciej Serda, Becker, F. G., Cleary, M., Team, R. M., Holtermann, H., The, D., Agenda, N., Science, P., Sk, S. K., Hinnebusch, R., Hinnebusch A, R., Rabinovich, I., Olmert, Y., Uld, D. Q. G. L. Q., Ri, W. K. H. U., Lq, V., Frxqwu, W. K. H., Zklfk, E., Edvhg, L. V., Wkh, R. Q., Aboueldahab, N., Khalaf, R., De Elvira, L. R., Zintl, T., Hinnebusch, R., Karimi, M., Mousavi Shafaee, S. M., O’driscoll, D., Watts, S., Kavanagh, J., Frederick, B., Norlen, T., O’Mahony, A., Voorhies, P., Szayna, T., Spalding, N., Jackson, M. O., Morelli, M., Satpathy, B., Muniapan, B., Dass, M., Katsamunska, P., Pamuk, Y., Stahn, A., Commission, E., Piccone, T. E. D., Annan, Mr. K., Djankov, S., Reynal-Querol, M., Couttenier, M., Soubeyran, R., Vym, P., Prague, E., Bank, World, Bodea, C., Sambanis, N., Florea, A., Florea, A., Karimi, M., Mousavi Shafaee, S. M., Spalding, N., Sambanis, N., فاطمی, ح. (2013). Synteza i aktywność biologiczna nowych analogów tiosemikarbazonowych chelatorów żelaza. Uniwersytet Śląski, 7(1), 343–354. https://doi.org/10.2/JQUERY.MIN.JS
Okenyi, N. J., Ndofor-Foleng, H. M., Tchoupou-Tchoupou, E. C., Ikeh, N. E., Nwenya, J. M., Amaefule, B. C., Uberu, C. P. N., Nwosu, I. C., & Onyimonyi, A. E. (2023). Expression Analysis of Interleukin-13 Gene in the Small Intestine of Three Genotypes of chickens Administered Conventional Antibiotics and Garlic. International Journal of Veterinary Science, 12(6), 815–821. https://doi.org/10.47278/journal.ijvs/2023.138
Patel, B. A., Gomis, S., Dar, A., Willson, P. J., Babiuk, L. A., Potter, A., Mutwiri, G., & Tikoo, S. K. (2008). Oligodeoxynucleotides containing CpG motifs (CpG-ODN) predominantly induce Th1-type immune response in neonatal chicks. Developmental & Comparative Immunology, 32(9), 1041–1049. https://doi.org/10.1016/J.DCI.2008.02.007
Pham, H. H. S., Matsubayashi, M., Tsuji, N., & Hatabu, T. (2021). Relationship between Eimeria tenella associated-early clinical signs and molecular changes in the intestinal barrier function. Veterinary Immunology and Immunopathology, 240. https://doi.org/10.1016/j.vetimm.2021.110321
Rafiq, K., Tofazzal Hossain, M., Ahmed, R., Hasan, M. M., Islam, R., Hossen, M. I., Shaha, S. N., & Islam, M. R. (2022). Role of Different Growth Enhancers as Alternative to In-feed Antibiotics in Poultry Industry. In Frontiers in Veterinary Science (Vol. 8). Frontiers Media S.A. https://doi.org/10.3389/fvets.2021.794588
Saravia, J., Chapman, N. M., & Chi, H. (2019). Helper T cell differentiation. In Cellular and Molecular Immunology (Vol. 16, Issue 7, pp. 634–643). Chinese Soc Immunology. https://doi.org/10.1038/s41423-019-0220-6
Segal, B. M., Dwyer, B. K., & Shevach, E. M. (1998). An Interleukin (IL)-10/IL-12 Immunoregulatory Circuit Controls Susceptibility to Autoimmune Disease. In The Journal of Experimental Medicine (Vol. 187, Issue 4).
http://www.jem.org
Song, H., Liu, X., Gao, X., Li, J., Shang, Y., Gao, W., Li, Y., & Zhang, Z. (2022). Transcriptome analysis of pre-immune state induced by interferon gamma inhibiting the replication of H9N2 avian influenza viruses in chicken embryo fibroblasts. Infection, Genetics and Evolution, 103, 105332. https://doi.org/10.1016/J.MEEGID.2022.105332
Song, L., Xiong, D., Hu, M., Jiao, X., & Pan, Z. (2018). Enhanced Th1/Th2 mixed immune responses elicited by polyethyleneimine adjuvanted influenza A (H7N9) antigen HA1-2 in chickens. Poultry Science, 97(12), 4245–4251. https://doi.org/10.3382/ps/pey313
Temple, D., & Manteca, X. (2020). Animal Welfare in Extensive Production Systems Is Still an Area of Concern. In Frontiers in Sustainable Food Systems (Vol. 4). Frontiers Media S.A. https://doi.org/10.3389/fsufs.2020.545902
Voss-Rech, D., Potter, L., Vaz, C. S. L., Pereira, D. I. B., Sangioni, L. A., Vargas, Á. C., & De Avila Botton, S. (2017). Antimicrobial resistance in nontyphoidal salmonella isolated from human and poultry-related samples in Brazil: 20-year meta-analysis. Foodborne Pathogens and Disease, 14(2), 116–124. https://doi.org/10.1089/fpd.2016.2228
Wang, T., Cheng, K., Yu, C. Y., Li, Q. M., Tong, Y. C., Wang, C., Yang, Z. Bin, & Wang, T. (2021). Effects of a yeast-derived product on growth performance, antioxidant capacity, and immune function of broilers. Poultry Science, 100(9). https://doi.org/10.1016/j.psj.2021.101343
Wills-Karp, M. (2001). IL-12/IL-13 axis in allergic asthma. Journal of Allergy and Clinical Immunology, 107(1), 9–18. https://doi.org/10.1067/mai.2001.112265
Wood, N., Whitters, M. J., Jacobson, B. A., Witek, J. A., Sypek, J. P., Kasaian, M., Eppihimer, M. J., Unger, M., Tanaka, T., Goldman, S. J., Collins, M., Donaldson, D. D., & Grusby, M. J. (2003). Enhanced interleukin (IL)-13 responses in mice lacking IL-13 receptor α 2. Journal of Experimental Medicine, 197(6), 703–709. https://doi.org/10.1084/jem.20020906
Yitbarek, A., Rodriguez-Lecompte, J. C., Echeverry, H. M., Munyaka, P., Barjesteh, N., Sharif, S., & Camelo-Jaimes, G. (2013). Performance, histomorphology, and Toll-like receptor, chemokine, and cytokine profile locally and systemically in broiler chickens fed diets supplemented with yeast-derived macromolecules. Poultry Science, 92(9), 2299–2310.
https://doi.org/10.3382/ps.2013-03141
Zhen, W., Shao, Y., Wu, Y., Li, L., Pham, V. H., Abbas, W., Wan, Z., Guo, Y., & Wang, Z. (2020). Dietary yeast β-glucan supplementation improves eggshell color and fertile eggs hatchability as well as enhances immune functions in breeder laying hens. International Journal of Biological Macromolecules, 159, 607–621. https://doi.org/10.1016/j.ijbiomac.2020.05.134